

Tom A. Loski Chief Regulatory Officer

16705 Fraser Highway Surrey, B.C. V4N 0E8 Tel: (604) 592-7464 Cel: (604) 250-2722 Fax: (604) 576-7074 Email: <u>tom.loski@terasengas.com</u> www.terasengas.com

Regulatory Affairs Correspondence Email: <u>regulatory.affairs@terasengas.com</u>

July 15, 2010

British Columbia Utilities Commission 6<sup>th</sup> Floor, 900 Howe Street Vancouver, B.C. V6Z 2N3

Attention: Ms. Erica Hamilton, Commission Secretary

Dear Ms. Hamilton:

#### RE: Terasen Gas Inc. ("TGI" or the "Company") Application ("Application") for a Certificate of Public Convenience and Necessity ("CPCN") for the Kootenay River Crossing (Shoreacres) Upgrade Project

Pursuant to Section 45 of the *Utilities Commission Act*, TGI hereby requests approval from the British Columbia Utilities Commission (the "Commission") for a CPCN for the Kootenay River Crossing (Shoreacres) Upgrade (the "Application").

Currently, an aerial crossing of transmission pressure pipeline with an outside diameter of 168 mm (6 inch) crosses the Kootenay River near the community of Shoreacres. The crossing was built in 1957 and is nearing its end of life. The Kootenay River Crossing Upgrade Project is required at this time to address integrity concerns with respect to the instability of the river bank slope where a main support cable anchor block and two wind cable anchor blocks are buried and the deteriorating condition of the aerial crossing structure and pipe. TGI has concluded that the risk associated with this crossing is unacceptable and remedial action is required.

The Kootenay River Crossing Upgrade Project is estimated at \$8.3 million (in as-spent dollars). The Company's current 2010-2011 Negotiated Settlement Agreement ("NSA") requires that the Company submit CPCN applications for capital investments in excess of \$5 million.

The Company has met with stakeholder representatives and presented an overview of this Application. In order to appropriately accommodate all stakeholders, Terasen Gas, believes the proposed regulatory process and timetable noted below provides an efficient review process for all parties concerned. As a result of discussions with the British Columbia Public Interest Advocacy Centre on behalf of the British Columbia Old Age Pensioners Organization *et al* ("BCOAPO") on this Application and other matters, Terasen Gas recognizes that the BCOAPO will be unable to participate in Information Request ("IR") No. 1. Terasen Gas believes, however, that with the benefit of IR No. 1 responses on the record, BCOAPO's participation in IR No. 2 should adequately address any issues or concerns it may have.

The Comany believes that the following regulatory timetable provides for an efficient review process.



| ACTION                                               | DATES (2010)           |
|------------------------------------------------------|------------------------|
| Commission Information Request No. 1                 | Tuesday, August 17     |
| Intervenor and Interested Party Registration         | Tuesday, August 24     |
| Intervenor Information Request No. 1                 | Tuesday, August 24     |
| TGI Response to Information Requests No. 1           | Thursday, September 9  |
| Commission and Intervenor Information Requests No. 2 | Thursday, September 23 |
| TGI Response to Information Requests No. 2           | Thursday, October 7    |
| TGI Written Final Submission                         | Thursday, October 21   |
| Intervenor Written Final Submission                  | Thursday, November 4   |
| TGI Written Reply Submission                         | Thursday, November 18  |

Twelve hardcopies of this Application will be submitted to the Commission in accordance with the Commission's CPCN Guidelines. The Application and all subsequent exhibits will be made available on the Terasen Gas website under the Regulatory Submissions section for the Lower Main/Squamish/Interior at the following link:

http://www.terasengas.com/\_AboutUs/RatesAndRegulatory/BCUCSubmissions/LowerMainlandSquami shInterior/default.htm

If there are any questions regarding this Application, please contact the undersigned.

Yours very truly,

#### TERASEN GAS INC.

#### Original signed:

Tom Loski

Attachments

cc (e-mail only): Parties to the TGI 2010-2011 Negotiated Settlement Agreement Stakeholder Contacts (as noted in Appendices O and P for whom e-mail information is listed)



# **TERASEN GAS INC.**

Application for a Certificate of Public Convenience and Necessity for the Kootenay River Crossing (Shoreacres) Upgrade

**Volume 1 - Application** 

July 15, 2010



## **Table of Contents**

| 1 | Арр                    | olication1                                                        |   |  |
|---|------------------------|-------------------------------------------------------------------|---|--|
|   | 1.1                    | Executive Summary                                                 | 2 |  |
|   | 1.2                    | Provincial Government Energy Objectives and TGI Resource Plan     | 4 |  |
|   | 1.3                    | Requested Regulatory Review of CPCN Application                   | 4 |  |
| 2 | Арр                    | licant                                                            | 6 |  |
|   | 2.1                    | Name, Address, and Nature of Business                             | 6 |  |
|   | 2.2                    | Financial Capability                                              | 6 |  |
|   | 2.3                    | Technical Capability                                              | 6 |  |
|   | 2.4                    | Name, Title, and Address of Company Contact                       | 7 |  |
|   | 2.5                    | Name, Title, and Address of Legal Counsel                         | 7 |  |
| 3 | Proj                   | ect Justification                                                 | 8 |  |
|   | 3.1                    | Overview of Existing Facilities                                   | 8 |  |
|   | 3.2                    | TGI Inspection Practice1                                          | 2 |  |
|   | 3.3                    | Slope Instability1                                                | 3 |  |
|   |                        | 3.3.1 Long-Standing Concerns                                      | 3 |  |
|   |                        | 3.3.2 Recent Study 1                                              | 3 |  |
|   | 3.4                    | General Deterioration of the Crossing1                            | 7 |  |
|   | 3.5                    | .5 Consequences of Pipeline Failure                               |   |  |
|   | Justification Summary1 | 9                                                                 |   |  |
| 4 | Upg                    | rade Alternatives2                                                | 1 |  |
|   | 4.1                    | Alternatives Considered2                                          | 1 |  |
|   |                        | 4.1.1 Refurbishment and Slope Stabilization of Existing Crossing2 | 1 |  |
|   |                        | 4.1.2 New Aerial Crossing                                         | 2 |  |
|   |                        | 4.1.3 Alternatives Using a New Alignment2                         | 2 |  |
|   |                        | 4.1.3.1 HDD Alternatives                                          | 4 |  |
|   |                        | 4.1.3.2 Re-Route Alternatives2                                    | 6 |  |
|   |                        | 4.1.4 Preliminary Screening Conclusion2                           | 7 |  |
|   | 4.2                    | Further Evaluation of Technically Viable Alternatives2            | 7 |  |



|   |      | 4.2.1                 | Financial    | Criteria                                       | 27 |
|---|------|-----------------------|--------------|------------------------------------------------|----|
|   |      |                       | 4.2.1.1      | Capital Cost Estimates                         | 27 |
|   |      |                       | 4.2.1.2      | Preliminary Monte Carlo Analysis               | 28 |
|   |      | 4.2.2                 | Net Prese    | ent Value, Cash Flow and Rate Payer Impact     | 29 |
|   |      | 4.2.3                 | Non-Fina     | ncial Considerations                           | 31 |
|   |      |                       | 4.2.3.1      | Additional Assessments                         | 31 |
|   |      |                       | 4.2.3.2      | Advantages and Disadvantages                   | 32 |
|   |      |                       | 4.2.3.3      | Weighted Scoring                               | 34 |
|   | 4.3  | Conclu                | sion – Pre   | ferred Option                                  | 35 |
| 5 | Proi | iect Des              | scription    |                                                | 36 |
| 5 | 110  |                       | scription    |                                                | 50 |
|   | 5.1  | Project               | Compone      | ents                                           | 36 |
|   |      | 5.1.1                 | Installatio  | n of HDD crossing                              | 36 |
|   |      | 5.1.2                 | Abandoni     | ment of TP pipe                                | 36 |
|   |      | 5.1.3                 | Decommi      |                                                | 37 |
|   | 5.2  | Design                |              | struction of the HDD Crossing                  | 37 |
|   |      | 522                   |              | Platt of Way                                   | 37 |
|   |      | 523                   |              | n of Crown Land                                | 38 |
|   |      | 524                   | Other I Itil | lities                                         | 38 |
|   |      | 525                   | Roads H      | iahways and Railways                           |    |
|   |      | 5.2.6                 | Restoratio   | 2n                                             |    |
|   |      | 5.2.7                 | Noise Co     | ntrol                                          | 39 |
|   |      | 5.2.8                 | Safety an    | d Security                                     | 39 |
|   | 5.3  | Project               | Schedule     | ·                                              | 39 |
|   | 5.4  | Resource Requirements |              | ements                                         | 40 |
|   |      | 5.4.1                 | Project M    | anagement                                      | 40 |
|   |      | 5.4.2                 | Design ar    | nd Quality Control                             | 40 |
|   |      | 5.4.3                 | Construct    | tion Services                                  | 41 |
|   |      | 5.4.4                 | Materials    |                                                | 41 |
|   | 5.5  | Other A               | Application  | is and Approvals                               | 41 |
|   |      | 5.5.1                 | OGC App      | lication                                       | 41 |
|   |      | 5.5.2                 | Other Per    | nding or Anticipated Applications / Conditions | 42 |



|    | 5.6                             | Risk Analysis and Management                                                                                                                                                                                                                         | 43                               |  |
|----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| 6  | Proj                            | oject Cost Estimate                                                                                                                                                                                                                                  |                                  |  |
|    | 6.1<br>6.2<br>6.3               | Cost Estimate Details<br>Financial Analysis<br>Deferral Account Treatment                                                                                                                                                                            | 45<br>47<br>48                   |  |
| 7  | Ove                             | erview of Environmental and Socio-Economic Assessments                                                                                                                                                                                               |                                  |  |
|    | 7.1<br>7.2<br>7.3<br>7.4        | Environmental Assessment<br>7.1.1 Environmental Screening Report<br>7.1.2 Further Plans<br>Contaminated Soils<br>Archaeology<br>Socio-Economic Assessment                                                                                            | 50<br>50<br>50<br>51<br>51<br>52 |  |
| 8  | Pub                             | ic Consultation                                                                                                                                                                                                                                      | . 53                             |  |
|    | 8.1<br>8.2<br>8.3<br>8.4<br>8.5 | Overview of Consultation Plan<br>Project Stakeholders Other than First Nations<br>Summary of Consultative Activities Occurred and Input Received<br>Future Consultation / Communication Plan<br>Conclusion – Sufficiency of the Consultation Process | 53<br>54<br>54<br>55<br>55       |  |
| 9  | First                           | Nations Consultation                                                                                                                                                                                                                                 | . 56                             |  |
|    | 9.1<br>9.2                      | Identification of First Nations with Asserted Claims in Area<br>OGC Process and Consultation with, and if Necessary Accommodation of,<br>First Nations                                                                                               | 56                               |  |
|    | 9.3                             | <ul> <li>TGI's Interaction with First Nations</li></ul>                                                                                                                                                                                              | 57<br>57<br>58                   |  |
|    | 9.4<br>9.5                      | Further Consultation Plan<br>Conclusion on First Nations Consultation                                                                                                                                                                                | 60<br>61                         |  |
| 10 | Con                             | clusion                                                                                                                                                                                                                                              | . 62                             |  |



## **List of Appendices**

- Appendix A TGI Standard OPM 08-02 Inspection of Bridge and Aerial Crossings
- Appendix B Assessment of East Bank Slope Stability at the Terasen Gas Shoreacres Aerial Crossing, TGI, July 2009
- Appendix C Inspection and Assessment of Kootenay River Aerial Crossing, Shoreacres, BC, CWMM Consulting Engineers Ltd., June 24, 2010
- Appendix D Kootenay Shoreacres River Aerial Replacement Project Comparative Assessment, Complete Crossings Inc., June 30, 2009 (Revision 5 May 2010)
- Appendix E HDD Geotechnical Investigation for Kootenay River Crossing, BGC Engineering, December 18, 2009
- Appendix F Inspection and Assessment of Kootenay River Bridge and Kootenay Canal Bridge, near Nelson, BC, CWMM, March 10, 2010
- Appendix G Monte Carlo Analysis Results
- Appendix H Financial Schedules
- Appendix IShoreacres Aerial Replacement Project Route Selection Environmental<br/>Screening Report, Westland Resource Group, July 15, 2009
- Appendix J Shoreacres Aerial Replacement Project Preliminary Field Reconnaissance & Final Report, Wayne Choquette & Eagle Vision Geomatics & Archaeology Ltd., July 16, 2009
- **Appendix K** Non-Financial Considerations Definitions and Rationale for Scores
- Appendix L Site Plan
- Appendix M Schedule
- Appendix N Project Communication Plan
- Appendix O Stakeholder Contact Summary
- Appendix P First Nations Information
- Appendix Q OGC Pipeline Manual First Nations Consultation Section
- Appendix R Draft Procedural Order and Draft Final Order



## **Index of Tables and Figures**

| Figure 3-1: Map of the ITS Showing Location of Kootenay River Aerial Crossing                                          | . 9 |
|------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 3-2: Photograph Showing the West Bank of the Shoreacres Aerial Crossing                                         | 10  |
| Figure 3-3: Photograph Showing the East Bank of the Shoreacres Aerial Crossing                                         | 11  |
| Figure 3-4: Photograph showing the east bank of the Shoreacres Aerial Crossing                                         | 12  |
| Figure 3-5: Slope Profile of the East Bank of the Kootenay River at the Existing Crossing –<br>Factor of Safety of 1.3 | 15  |
| Figure 3-6: Slope profile of the East Bank of the Kootenay River at the Existing Crossing –<br>Factor of Safety of 1.5 | 16  |
| Figure 4-1: Site Plan Showing Alternatives Considered2                                                                 | 23  |
| Figure 4-2: Site Plan Showing Approximate Locations of HDD Alternatives Considered                                     | 25  |
| Table 4-1: Capital Cost Comparison Summary for Viable Alternatives \$2009                                              | 29  |
| Table 4-2: Capital Cost Comparison Summary for Viable Alternatives \$ As-Spent                                         | 30  |
| Table 4-3: Incremental Cost of Service and Rate Impact Summary                                                         | 31  |
| Table 4-4: Screening Matrix (Non-Financial Factors)                                                                    | 35  |
| Table 5-1: Schedule Milestones                                                                                         | 39  |
| Figure 5-1: Project Functional Organization Chart                                                                      | 40  |
| Table 5-2: Project Execution - Risk Control Summary                                                                    | 43  |
| Table 5-3: Risk Ranking of Key Risks                                                                                   | 44  |
| Table 6-1: Capital Cost                                                                                                | 46  |
| Table 6-2: Financial Analysis of HDD Final Project Cost                                                                | 48  |
| Table 8-1: Project Communication Plan Summary                                                                          | 55  |



## IN THE MATTER OF THE UTILITIES COMMISSION ACT R.S.B.C. 1996, CHAPTER 473

### AND IN THE MATTER OF AN APPLICATION BY

#### **TERASEN GAS INC. FOR THE**

#### KOOTENAY RIVER CROSSING (SHOREACRES) UPGRADE

To: The Commission Secretary

British Columbia Utilities Commission Sixth Floor, 900 Howe Street Vancouver, British Columbia V6Z 2N3

## **1 APPLICATION**

Terasen Gas Inc. ("TGI" or the "Company") hereby applies to the British Columbia Utilities Commission (the "BCUC" or the "Commission"), pursuant to Sections 45 and 46 of the Utilities Commission Act, R.S.B.C. 1996, Chapter 473, (the "Act"), for approval of a Certificate of Public Convenience and Necessity ("CPCN") to upgrade the TGI Interior Transmission System ("ITS") crossing of the Kootenay River near Shoreacres, B.C., a small community approximately half way between Castlegar and Nelson (the "Project" or "Application").

The Project is intended to ensure the integrity of an existing pipeline crossing. The crossing is nearing its end of its useful structural life and is challenged by slope instability that endangers the main support cable anchor block and the two wind cable anchor blocks of the pipeline crossing.

The installation of a new pipeline crossing using the Horizontal Directional Drill ("HDD") construction method addresses the risks related to both the deteriorating condition of the crossing structure and pipe and the slope instability concerns at the east terminus of the crossing, thereby ensuring security of supply to customers in the region.



#### 1.1 Executive Summary

The Company seeks a CPCN to upgrade an aerial crossing that is located on the TGI Interior Transmission System Savona-Nelson Main Line. The crossing, built in 1957, spans the Kootenay River near the community of Shoreacres (a small community approximately mid way between Castlegar and Nelson) and serves approximately 5200 customers downstream of the crossing. Terasen Gas has identified two issues with the crossing that must be addressed.

The first issue is the instability of the slope at the east end of the crossing. The east end of the aerial crossing terminates on a steep slope in which both the main support cable anchor block and the two wind cable anchor blocks are buried. A failure of this unstable slope could undermine some or all of these anchor blocks, which, in turn, could cause the aerial crossing to lose support on the east end. A 2009 report concluded that the east bank slope is only "marginally stable". If any aggravating factors were introduced, such as increased pore water pressure or seismic load, the east bank slope could fail. The study recommends that the slope be avoided when TGI considers replacement or refurbishment options.

Second, the crossing is reaching the end of its useful structural life expectancy and is experiencing corrosion in various components of the crossing, such as cables, piping, tower, and anchors.

Terasen Gas has concluded that the slope instability must be addressed at this time; it is not a viable option to maintain the status quo. To address both the slope instability concern and the continuing deteriorating condition of the crossing, TGI evaluated numerous options, ranging from refurbishment of the existing crossing including reinforcement of the unstable slope, replacement with a new aerial crossing, a new Transmission Pressure or Intermediate Pressure alignment, and a new Horizontal Directional Drill ("HDD") alignment.

An initial, high level screening process determined that stabilizing the slope with the existing crossing in place, and taking into account the environmental impact on the Kootenay River, was not a viable option. A new aerial crossing which would have to be substantially longer to avoid the unstable slope was also rejected on the basis of cost and visual and land impacts. Furthermore, the slope instability issue precluded any alternative using the existing alignment.

In terms of replacing the crossing, TGI's screening process identified three alternatives for more detailed evaluation:

- a) HDD: constructing a new crossing approximately 880 m in length, by means of HDD, entering near the existing western terminus of the existing aerial crossing and exiting 625 m north of the existing east terminus.
- b) Transmission Pressure ("TP") Re-route: installing approximately 9 km of NPS 6 pipeline, using standard trench and cover and transportation corridor crossing methods.



c) Intermediate Pressure ("IP") Re-route: similar to the TP re-route, but including a TP/IP station, 9 km of NPS 8 pipeline and with the transmission line downstream of the tie-in point reduced to IP.

All of these alternatives avoid the unstable slope on the east side of the existing crossing. Of the three, the HDD option (the Project) is superior to other options in terms of capital cost, ratepayer impact, and non-financial considerations. The estimated capital cost for the Project is 40% less than the costs for TP or IP Re-route. In addition, TGI completed a screening analysis of the three short-listed alternatives using the following non-financial factors: safety, environmental, land, First Nations, operational impacts, system capacity and aesthetics. The Project ranked equal or better than both the TP and IP Re-route options for almost all of these factors.

The Project has an estimated capital cost of approximately \$8.3 million as-spent and involves:

- Installation of approximately 880 m of new NPS 6 transmission pressure pipe beneath the Kootenay River to be installed using the HDD construction method.
- decommissioning and removal of the existing NPS 8 Kootenay River aerial crossing near the community of Shoreacres, and
- abandonment of approximately 625 m of NPS 6 transmission pressure pipe between the east end of the existing crossing and the tie-in point of the new crossing

The Project is scheduled to be in service by the end of 2011.

The Company has identified a number of Project stakeholders, including residents, businesses and government entities, and has in place a communication plan for consultation with the public. Initial communications with the public about the Project have already taken place, and all issues identified have been resolved or a plan is in place to deal with them.

Three First Nations, the Ktunaxa Nation Council, the Okanagan Nation Alliance, and the Sinixt Nation Society, have been informed and engaged with regard to the Project. To date, no First Nations have expressed opposition to the Project. Plans are being developed to involve the First Nations in future archaeological investigations. TGI will continue to engage with the three First Nations with respect to any concerns that they may raise.

The Company believes that the Project is in the public interest and should be approved.



#### 1.2 Provincial Government Energy Objectives and TGI Resource Plan

The Provincial government energy objectives are defined in Section 1 of the Utilities Commission Act. The Project, which is intended to address system integrity, does not have a direct link to the energy objectives defined therein, and does not hamper other projects or initiatives undertaken by TGI that advance these objectives.

The Project was identified as part of the major capital projects for the period of 2008 to 2012 in Terasen Gas Inc's 2008 Resource Plan, which was accepted by the Commission in Order G-194-08. The Resource Plan identified a HDD crossing as the prime alternative to replace the aerial crossing.

## 1.3 Requested Regulatory Review of CPCN Application

The Company's 2010 and 2011 Revenue Requirements Negotiated Settlement Agreement provides that TGI will apply for a CPCN for projects in excess of \$5 million. Given that the current estimated capital cost of the Project exceeds the threshold, TGI is applying to the Commission for a CPCN for the Project.

The Information contained in this Application accords with the guidelines set out in the Commission's <u>2010 Certificates of Public Convenience and Necessity Application Guidelines</u> (the "Guidelines"). Draft Procedural and Final Orders are included as Appendix R.

TGI believes that a written review and approval process is appropriate for this Application, and that the following regulatory timetable provides for an efficient review process.

| ACTION                                               | DATES (2010)           |
|------------------------------------------------------|------------------------|
| Commission Information Request No. 1                 | Tuesday, August 17     |
| Intervenor and Interested Party Registration         | Tuesday, August 24     |
| Intervenor Information Request No. 1                 | Tuesday, August 24     |
| TGI Response to Information Requests No. 1           | Thursday, September 9  |
| Commission and Intervenor Information Requests No. 2 | Thursday, September 23 |
| TGI Response to Information Requests No. 2           | Thursday, October 7    |
| TGI Written Final Submission                         | Thursday, October 21   |
| Intervenor Written Final Submission                  | Thursday, November 4   |
| TGI Written Reply Submission                         | Thursday, November 18  |



The Project involves upgrading an existing asset to maintain the integrity of a pipeline that is near end of its useful life, has been previously identified in TGI's 2008 Resource Plan as a major capital project for the period of 2008-2012, and has to date identified no significant stakeholder or First Nations concerns. The Application provides information on all areas required by the *Guidelines*. Any additional areas of concern in this Application can be adequately addressed through a written process.

As stated in section 5.5.1, the Project is conditional upon receiving approval from the Oil and Gas Commission ("OGC") of a Pipeline Application that was filed with the OGC on February 19, 2010. TGI respectfully requests that the Commission complete its process to review this Application and reach a decision by mid-November 2010 in order to meet the proposed construction schedule outlined herein.



## 2 APPLICANT

#### 2.1 Name, Address, and Nature of Business

TGI is a company incorporated under the laws of the Province of British Columbia and is a wholly-owned subsidiary of Terasen Inc., which in turn is a wholly-owned subsidiary of Fortis Inc. TGI maintains an office and place of business at 16705 Fraser Highway, Surrey, British Columbia, V4N 0E8.

TGI is the largest natural gas distribution utility in British Columbia, providing sales and transportation services to residential, commercial, and industrial customers in more than 100 communities throughout British Columbia, with approximately 930,000 customers served on the mainland including the Inland, Columbia, and Lower Mainland service areas. TGI's distribution network delivers gas to more than eighty percent of the natural gas customers in British Columbia.

## 2.2 Financial Capability

TGI is regulated by the BCUC. TGI is capable of financing the Project either directly or through its parent, Terasen Inc. TGI has credit ratings for senior unsecured debentures from Dominion Bond Rating Service and Moody's Investors Service of A and A3 respectively. Terasen Inc. has credit ratings for senior unsecured debentures from Dominion Bond Rating Service and Moody's Investors Service of BBB (High) and Baa2 respectively.

#### 2.3 Technical Capability

TGI has designed and constructed a system of integrated high, intermediate and low-pressure pipelines and operates more than 39,800 kilometres of natural gas transmission and natural gas distribution mains and service lines in British Columbia. This transmission and distribution infrastructure serves approximately 930,000 customers on the mainland.



### 2.4 Name, Title, and Address of Company Contact

| Tom A. Loski.            |                                   |  |  |
|--------------------------|-----------------------------------|--|--|
| Chief Regulatory Officer |                                   |  |  |
| Terasen Gas Inc.         |                                   |  |  |
| 16705 Fraser Highway     |                                   |  |  |
| Surrey, B.C., V4N 0E8    |                                   |  |  |
| Phone:                   | (604) 592-7464                    |  |  |
| Facsimile:               | (604) 576-7074                    |  |  |
| E-mail:                  | tom.loski@terasengas.com          |  |  |
| Regulatory Matters:      | regulatory.affairs@terasengas.com |  |  |

#### 2.5 Name, Title, and Address of Legal Counsel

Song Jin Hill Fasken Martineau DuMoulin LLP 2900-550 Burrard Street Vancouver, B.C. V6C 0A3 Phone: (604) 631-4824 Facsimile: (604) 632-3232 E-mail: shill@fasken.com

or

Matthew Ghikas Fasken Martineau DuMoulin LLP 2900-550 Burrard Street Vancouver, B.C. V6C 0A3 Phone: (604) 631-3191 Facsimile: (604) 632-3191 E-mail: mghikas@fasken.com



## 3 **PROJECT JUSTIFICATION**

TGI has identified two threats to the integrity of the existing aerial crossing over the Kootenay River that has been in place since 1957:

- Slope Instability at the East Terminus A major concern is the eastern end of the crossing structure which terminates on a very steep slope. An analysis of the slope concludes it is only marginally stable and is subject to short term and long term safety concerns, which could undermine the anchor blocks. The main support cable anchor block, the two wind cable anchor blocks and approximately 300m of pipeline are buried in this section of unstable slope.
- Deterioration of the Crossing The Kootenay River crossing is over 50 years old with corrosion in various components and, unless a major refurbishment is undertaken, is nearing the end of its useful structural life.

TGI has concluded that these issues must be addressed to ensure the integrity of the crossing. This section provides a description of the existing aerial crossing structure, including the current condition of various components of the crossing structure and the terminus sites, and discusses the two major threats to the integrity of the crossing and consequences to TGI customers if the threats are not alleviated.

## 3.1 Overview of Existing Facilities

The Kootenay River aerial crossing is part of the Savona-Nelson Main Line ("SNML"), which was constructed in 1957. The NPS 6 SNML section between Castlegar and Nelson is a single direction flow from Castlegar to Nelson and includes eight stations and Transmission Pressure ("TP") services with the largest being the Nelson Gate Station. When constructed, this section also included two NPS 8 aerial crossings, a crossing of the Columbia River near Castlegar and a crossing of the Kootenay River at the convergence of the Slocan and Kootenay Rivers near the community of Shoreacres, a small community approximately mid way between Castlegar and Nelson. The Columbia River crossing near Castlegar was successfully replaced with a new HDD crossing in 2009.

The Kootenay River aerial crossing consists of a single pipe supported by a main support cable suspended by a tower on the west side of the crossing and an anchor block buried in the hillside on the east side of the crossing. Two other cables, referred to as "wind" cables, provide lateral stability. The east wind cable anchor blocks are also buried in the hillside on the east terminus of the crossing.



The aerial crossing is 285 m long from kilometre post ("kmp") 17.368 to kmp 17.653.

The western support tower for the crossing is located on a large piece of property owned by TGI with a number of residential landowners adjacent. The east terminus and anchor blocks are located on a steep slope, which has experienced, and is continuing to experience, surface sloughing as described in Section 3.3. The support structures at each terminus are enclosed in fenced compounds.

The system serves approximately 5200 customers located in the City of Nelson and its surrounding area, downstream of the aerial crossing.

Figure 3-1 below is a map of the ITS and Figures 3-2, 3-3 and 3-4 show the existing Kootenay River aerial crossing.



Figure 3-1: Map of the ITS Showing Location of Kootenay River Aerial Crossing

Figure 3-2 below is a photograph taken from the east bank looking across the Kootenay River toward the west bank of the Shoreacres Aerial Crossing. This east bank has experienced surface sloughing towards the river.





#### Figure 3-2: Photograph Showing the West Bank of the Shoreacres Aerial Crossing



Figure 3-3 below is a photograph looking downstream along east bank of the Shoreacres Aerial crossing. Note the steep slope on the east bank and the poor condition of the fencing caused by the surface sloughing.



Figure 3-3: Photograph Showing the East Bank of the Shoreacres Aerial Crossing



Figure 3-4 below is a photograph showing the view of the east bank of the Shoreacres Aerial Crossing. The steep-sided east bank is the location of the surface sloughing. The Project will bypass this slope.



Figure 3-4: Photograph showing the east bank of the Shoreacres Aerial Crossing

#### 3.2 TGI Inspection Practice

The Canadian Standard CSA Z662, Oil and Gas Pipeline Systems, requires that facilities be regularly inspected to ensure that they continue to be fit for service. Detailed crossing inspection requirements are provided in the TGI standard OPM 08-02 Inspecting Bridge and Aerial Crossings. A copy of the TGI crossing inspection standard is attached as Appendix A. The Kootenay River crossing has been inspected in accordance with this standard, earlier versions of this standard and/or the company's general inspection practices since the crossing was originally constructed in 1957.

The buried portions of the Savona Nelson Main Line between Savona and Castlegar have been inspected using In-Line-Inspection tools since 1988. The buried section between Castlegar and Nelson has been evaluated using over-the-line cathodic protection survey techniques with digs performed at selected sites to assess TGI's corrosion mitigation activities and to confirm asset fitness-for-service. To date, all buried portions of the TP pipeline between Savona and Nelson



are deemed, from an operating perspective, to be in acceptable condition subject to on-going inspection and maintenance.

The Kootenay River aerial crossing has been inspected in accordance with TGI's Bridge and Aerial Crossing Inspection standard. In addition to the twice yearly visual inspections, more detailed inspections of the crossing were carried out in 1994, 1998, 2003, and 2009. Assessments of the slope condition at the east terminus were conducted in 1990, 1995 and 2009. The stability of the east slope is also included in TGI's Natural Hazards Risk Management Program and is periodically re-assessed as required under this program.

TGI has continued to monitor the crossing as it approaches the end of its useful structural life. Based on the most recent studies and assessments, TGI has concluded that the crossing must be replaced, rather than refurbished, to address the operating risks associated with slope instability and to attain acceptable standards at the site. The specific concerns related to the slope instability and the crossing condition will be further described in Sections 3.3 and 3.4.

#### 3.3 Slope Instability

Slope instability on the east bank of the river must be addressed in the near term, as the slope is only marginally stable and poses a risk of failure of the crossing.

#### 3.3.1 LONG-STANDING CONCERNS

The aerial crossing terminates on the east bank of the Kootenay River on a relatively steep slope. The main support cable anchor block and two wind cable anchor blocks are buried in this slope.

Crossing inspections have regularly identified surface sloughing as a concern at this location. In the early '90's it was observed that soil was pushing against the above ground portion of the pipeline at this location and a retaining wall was constructed to mitigate this problem.

## 3.3.2 RECENT STUDY

TGI undertook a detailed review of the slope stability at this location in 2009. Considering the importance and complex nature of this issue, TGI structured this review as a collaborative effort between TGI's Geotechnical Engineer responsible for the TGI Natural Hazards Monitoring Program and an external subject matter expert from BGC Engineering ("BGC").<sup>1</sup> The results of this review are documented in a July 2009 report titled Assessment of East Bank Slope Stability

<sup>&</sup>lt;sup>1</sup> BGC Engineering Inc. – an international consulting company specializing in geotechnical and water resources engineering and applied earth sciences.



at the Terasen Gas Shoreacres Aerial Crossing. A copy of the report is attached as Appendix B. The conclusion of the authors was that the slope is only marginally stable.

The 2009 analysis used surveyed contours, current industry accepted modeling software, and as-built drawings to determine the effects of the slope instability on the structural components of the aerial crossing. The study also used additional soils information from the drilling investigation done for the HDD feasibility study.

To aid in understanding the results of the slope stability analysis it is helpful to define the term "angle of repose". The angle of repose is the steepest slope at which a pile of granular material will stand. If a slope exceeds the angle of repose of its composite material, the surface material will begin to slide down the slope until the angle of repose is re-established. The field evidence of this process is a shallow surface sloughing, as seen at the Kootenay River East Bank at Terasen's Shoreacres crossing.

A slope at its angle of repose is defined to have a factor of safety of 1. This is the case for the portion of the east slope of the Kootenay River Crossing in which the anchor blocks are buried. TGI's geotechnical consultant has recommended, however, that the short-term static and long-term static factors of safety should be 1.3 and 1.5, respectively. This provides a reasonable margin of stability beyond the angle of repose.

For the east terminus of the crossing, the engineers analysed the slope and determined where the slope angles corresponding to factors of safety of 1.3 and 1.5 would be located within the slope. The location of these slope positions relative to the anchor blocks will provide a measure of risk to the overall crossing structure.

The slope positions representing factors of safety of 1.3 and 1.5 are illustrated in Figures 3-5 and 3-6.

Figure 3-5 below is a slope profile of the east bank of the Kootenay River at the location of the terminus of the existing crossing showing the slope position for a factor of safety of 1.3. A failure at this location could impact the wind cable anchor blocks.





# Figure 3-5: Slope Profile of the East Bank of the Kootenay River at the Existing Crossing – Factor of Safety of 1.3

Figure 3-6 which follows is a slope profile of the east bank of the Kootenay River at the location of the terminus of the existing crossing showing the slope position for a factor of safety of 1.5. A failure at this location could impact both the wind cable anchor blocks and the main support cable anchor block.





# Figure 3-6: Slope profile of the East Bank of the Kootenay River at the Existing Crossing – Factor of Safety of 1.5

The engineers responsible for performing the slope stability study concluded that:

- The slope angle representing a factor of safety of 1.3 intersects the wind cable anchor blocks. This means that, in the short term, there is an insufficient margin of safety where the wind cable anchor blocks are installed, and there is a reasonable risk that the slope could fail in these locations. A slope failure at this depth could impact the wind cable anchor blocks, possibly causing the anchor blocks to move and the cables to lose tension which would require taking the crossing out of service for major repairs. This is unacceptable as the crossing is part of a single feed to Nelson. For these reasons the slope does not meet the short term stability criteria.
- The slope angle with a factor of safety of 1.5 lies below both the wind cable and main support cable anchor blocks. This means that, in the long-term, there is an insufficient margin of safety where the wind cable and main support cable anchor blocks are installed, and there is a reasonable risk that the slope could fail in these locations. A slope failure at this depth could cause the aerial crossing to lose all support on the east bank which could result in the crossing collapsing into the river. At a minimum, the crossing would have to be taken out of service and replaced. This is unacceptable as the crossing is part of a single feed to Nelson. For these reasons the slope does not meet the long term stability criteria.



Overall, the 2009 report concluded that the east bank slope is only "marginally stable". If any aggravating factors were introduced, such as increased pore water pressure caused by heavy seasonal run-off or by a very heavy rainfall or by seismic load, the east bank slope could fail.

Increasing the slope stability can be achieved by decreasing the slope angle. This can be accomplished in one of two ways:

- Decreasing the slope angle by removing material from the existing slope. This would require extensive earthworks and is not possible while the existing aerial crossing is in operation. As such, this is not a feasible alternative.
- Construction of a toe buttress which would allow the slope angle in the vicinity of the anchor blocks to be reduced by the addition of more material. A toe buttress would be very difficult to construct as the slope extends into the river and significant in-stream works would be required. In-stream buttress construction would require extensive environmental impact assessment work and additional environmental permit/approval acquisition as this work would result in a harmful alteration, disruption and destruction of fish habitat ("HADD") and potentially impact on federally listed species at risk within the Kootenay River. Additional federal and provincial environmental permits/approvals would be required to meet requirements under the Fisheries Act, Navigable Waters Protection Act, Species at Risk Act, Canadian Environmental Assessment Act and provincial Water Act. Significant habitat compensation work would also be required to offset the impacts associated with the buttress. It is TGI's opinion that the permit process would be lengthy, likely well in excess of a year, and, given the availability of a technically viable alternative, the chances of being granted the necessary permits are very low. For these reasons, TGI concludes that construction of a toe buttress is not a feasible alternative.

Overall, TGI concludes that it is not feasible to improve the slope stability to an acceptable level.

## 3.4 General Deterioration of the Crossing

The Kootenay River aerial crossing has been in service for over 50 years, and is reaching the end of its useful structural life. Significant refurbishment would be required to extend the life of the pipeline crossing, and this would not address the immediate concern of the instability of the east slope.



TGI commissioned CWMM Consulting Engineers Ltd. ("CWMM")<sup>2</sup> to inspect and assess the general condition of the crossing. A copy of the CWMM report is attached as Appendix C. The CWMM report did not address the slope instability issue, which was addressed in a separate report discussed above. The CWMM report recommends that if the structure is to remain in service beyond five years, then certain remedial measures should be considered in the near future, including:

- Repainting of the pipe and steelwork components (TGI has tested the paint which is known to contain lead. Therefore containment will be needed to avoid deleterious material from entering the Kootenay River or the surrounding area. As a result the cost of repainting will be significant.)
- Replacement of seized roller supports (The CWMM report notes that this item poses challenges as the pair of rollers at each vertical suspension point are welded to the inside of the supporting pipe sleeve and will need to be torch cut loose to allow new rollers to be welded into the narrow space between the pipe and sleeve support.)
- Refurbishment of the east end anchorages (The CWMM report notes that this will
  present challenges as the anchorages are contained within metal culverts that are buried
  in the embankment and exposing them will require excavating the overburden, possibly
  with some additional slope retention to support the excavation. Access difficulties will
  add to the complexity and cost of this operation.)

The CWMM report further notes that the assessment was based on a visual assessment only. TGI concludes that, if the structure were to remain in service (and to do so, the slope instability would have to be addressed), structural testing of all components should be carried out, including the testing of the tension of all cables, with refurbishment undertaken as required.

## 3.5 Consequences of Pipeline Failure

The City of Nelson and its surrounding area are downstream customers of the Kootenay River crossing. A significant failure of the aerial crossing would leave approximately 5200 TGI customers without gas supply for a potentially prolonged period. The customer base is primarily core market residential and commercial customers with only one interruptible customer.

<sup>&</sup>lt;sup>2</sup> CWMM Consulting Engineers Ltd. – a professional service company specializing in the structural design of all types of buildings, marine structures, industrial facilities, and reservoirs.



Among the mix of customers are the following ten critical customers that depend on natural gas for heat:

- Kootenay Lake Hospital
- McKim House Care Home
- Mountain Lake Seniors Centre
- Central School
- Gordon Sargeant Primary School
- Brent Kennedy School
- Brent Kennedy Day Care
- Canadian International College
- Harrop Community Hall
- Harrop Greenhouse

The linepack in the NPS 6 transmission line is limited. It is estimated that, following a failure of the crossing, loss of gas supply to customers would start in as little as one hour on a design peak day, and in approximately three hours on a normal winter day. The outage would last in the order of several weeks to several months to restore service to downstream customers. The east bank of the crossing is relatively remote and access would be difficult. Removing a failed structure in the presence of the unstable slope would have a significant impact on the east shore of the Kootenay River.

In addition to prolonged outage concerns, if a significant slope failure occurred on the east bank, the crossing structure could collapse into the river with potentially serious environmental consequences.

TGI considers the risk identified above to be unacceptable, and the concerns discussed in Sections 3.3 and 3.4 must be addressed in the near-term.

#### 3.6 Justification Summary

The east end of the Kootenay River crossing is on a relatively steep slope, which has shown signs of sloughing for many years. The most recent assessment of the slope condition



concluded the slope is marginally stable and is below the minimum recommended factors of safety for both short and long term static conditions. Additional stressors could cause failure. The aerial crossing has also been in service for over 50 years with corrosion to various components. It would require a major refurbishment if it was to remain in service. Given the potential for a slope failure at the east terminus, the requirement for a major refurbishment of the crossing itself, and the social, environmental and cost consequences of a failure, TGI is of the belief that it is in the public interest to upgrade the Kootenay River crossing at this time.



## 4 UPGRADE ALTERNATIVES

TGI considered a number of upgrade alternatives and applied financial and non-financial criteria to identify the preferred alternative. This section includes:

- A discussion of all alternatives considered and the results of a preliminary screening leading to the identification of three technically viable alternatives
- An evaluation of the three technically viable alternatives using the following criteria:
  - Capital cost estimates including the use of a preliminary Monte Carlo analysis
  - Non-financial considerations
  - Net Present Value and ratepayer impact
- An evaluation summary and conclusion

This evaluation demonstrated that the best solution for customers is to replace the existing crossing with approximately 800 m of new NPS 6 transmission pressure pipe beneath the Kootenay River installed using the HDD construction method. This alternative was superior in terms of being the lowest cost alternative and also in relation to non-cost factors.

#### 4.1 Alternatives Considered

TGI identified several alternatives. In the initial phase of the evaluation, TGI considered the ability of each alternative to address both the slope instability and the deteriorating condition of the crossing. This analysis is described below.

#### 4.1.1 REFURBISHMENT AND SLOPE STABILIZATION OF EXISTING CROSSING

One alternative that TGI considered to address the instability of the eastern terminus of the aerial crossing and address the end of life issue was to refurbish the crossing structure and stabilize the east terminus slope. However, as noted in Section 3.3, increasing the stability of this slope would require decreasing the slope angle or constructing a toe buttress. Decreasing the slope would require extensive earthworks and is not feasible while the aerial crossing is in place. A toe buttress would be very difficult to construct as the slope extends into the Kootenay River and in-stream work would be required. Also, this option would have a significant environmental impact on the Kootenay River. TGI has made a preliminary evaluation of the permit process that would be required for this option and is of the opinion that this process would take in excess of one year to complete. Given the availability of a technically viable alternative (described later in this section), there would be a low likelihood that the necessary permits would be granted. Based on these technical obstacles, TGI rejected a refurbishment of the existing aerial crossing and any alternative using the same alignment.



#### 4.1.2 NEW AERIAL CROSSING

TGI considered a new aerial crossing in a different location; however, TGI concluded that this was not a viable alternative on the basis of cost and local visual and land impacts. A new crossing starting in the vicinity of the west end of the existing crossing would have to be oriented to the north-east in order to avoid the unstable area on the east side of the existing crossing, resulting in a very long and costly structure with a large visual impact. A location to the north of the existing crossing would require new transmission pressure Right of Way ("ROW") through a built up area and would have a significant visual impact. A location to the south of the existing crossing would require considerable new ROW and avoiding the area of slope instability at the east end of the existing crossing would add to the Project complexity and cost. Moreover, aerial crossings have high capital and maintenance costs and are becoming much less common in situations where HDD provides a viable alternative. For these reasons, a new aerial crossing was concluded not to be a viable alternative.

#### 4.1.3 ALTERNATIVES USING A NEW ALIGNMENT

TGI considered replacing the crossing with a new alignment that avoided the unstable slope area. Within this alternative, seven different alignments were considered including five different HDD alignments, and Transmission Pressure ("TP") and Intermediate Pressure ("IP") re-routes utilizing new ROW and two highway bridge crossings. Three of these options were identified as technically viable alternatives that would address the slope instability and structure and piping deterioration concerns and merited further analysis.

Figure 4-1 is a site plan showing the location of the various alternatives. (The TP and IP options follow essentially the same route and they are shown as a single line in this figure.)









### 4.1.3.1 HDD Alternatives

TGI retained Complete Crossings Inc ("CCI")<sup>3</sup> to assist in identifying a range of HDD alignments and to evaluate the technical viability of these alternatives. In total, five potential HDD alignments were analyzed and the results of this analysis are documented in CCI's report titled Kootenay Shoreacres River Aerial Replacement Project Comparative Assessment which is attached as Appendix D. The alternative alignments were Lazaroff, Shoreacres South, Shallow Angle, Large Angle<sup>4</sup>, and Shoreacres North. Only the Large Angle option, described below, was determined to be feasible. The other four options were found to be technically infeasible due to an unacceptably high risk of drilling fluid fracture to the surface with minimal options for mitigation using standard techniques. TGI thus eliminated all but the Large Angle option from further consideration at the initial screening stage. The four options eliminated from consideration were not economically evaluated.

<sup>&</sup>lt;sup>3</sup> Complete Crossings Inc. – an engineering consulting company specializing in the feasibility assessment, design, and construction supervision of Horizontal Directional Drills.

<sup>&</sup>lt;sup>4</sup> The terms Large Angle and Shallow Angle are used to describe two of the HDD alternatives. The word "angle" refers to the angle between the proposed drill path and the orientation of the existing crossing.





Figure 4-2: Site Plan Showing Approximate Locations of HDD Alternatives Considered

The Large Angle HDD option (the "HDD Option" or the "HDD Alternative"), which emerged as the only viable HDD option, utilizes an HDD entering in the vicinity of the existing western terminus of the Kootenay River aerial crossing and exiting close to or within the existing ROW on the east side of the river approximately 650 m north of the existing eastern terminus of the aerial crossing. The downstream tie-in at the exit point is approximately kmp 18.2. The total bore length is approximately 880 m. The existing pipeline ROW north of the tie-in point would be used for stringing the pipe for the new crossing. A geotechnical investigation by BGC Engineering along the proposed HDD alignment supports the conclusion that the technical



feasibility of the route is within acceptable parameters. A copy of BGC's report is attached as Appendix E.

#### 4.1.3.2 Re-Route Alternatives

TP and IP re-routes utilizing existing bridges to cross the Kootenay River and Kootenay Canal were identified as technically viable alternatives. Preliminary routes for these alternatives were determined by TGI using internal engineering resources. A consultant was commissioned to review the feasibility of utilizing the bridges for river crossings. The review determined that these options were technically viable, hence the TP and IP Re-route alternatives were subjected to the second phase of the assessment.

The features of the TP re-route are:

- The TP re-route would require approximately 9 km of NPS 6 pipeline to be installed. The start point would be the end of the Shoreacres Lateral, making use of the existing NPS 4 (114 mm) crossing of the Slocan River. This option envisages utilizing two existing road bridges to cross the Kootenay River and the Kootenay Canal, both of which are shown on Figure 4-1. The downstream tie-in to the existing transmission line would be at approximately kmp 23.7 near the Kootenay Canal Bridge.
- The re-route would potentially utilize an existing utility corridor owned by Teck Cominco with a ROW registered to FortisBC Inc. for high voltage power line transmission. Between the FortisBC owned dam and the downstream tie-in the TP option would parallel Blewett road and utilize the Kootenay River and Kootenay Canal bridges. Blewett Road and both bridges are owned by the City of Nelson.

The suitability of the bridges for carrying natural gas transmission lines is the subject of a CWMM report titled Inspection and Assessment of Kootenay River Bridge and Kootenay Canal Bridge, Near Nelson, BC. The assessment concluded that the bridges were suitable for carrying the pipelines, however, some seismic upgrades to the bridges would be required. A copy of the report is attached as Appendix F.

The IP re-route option is similar to the Transmission Pressure Re-route, but includes a TP / IP station with some or all of the re-route reduced to IP in order to reduce ROW acquisition costs through the use of construction within road allowances. With this option, the operating pressure of the portion of the existing transmission system downstream of the IP Re-route tie-in point would be lowered to intermediate pressure.



#### 4.1.4 PRELIMINARY SCREENING CONCLUSION

At the initial screening stage, refurbishment and all other alternatives utilizing the existing alignment were eliminated from contention due to the inability to effectively mitigate the slope instability concerns on the east terminus of the existing crossing. A number of HDD alternatives were assessed but only one, the Large Angle HDD, was concluded to be technically viable. The viable options (Large Angle HDD, TP and IP Re-Route alternatives) were subjected to a further assessment described in Section 4.2 below.

#### 4.2 Further Evaluation of Technically Viable Alternatives

TGI undertook a second level of assessment in respect of the three viable alternatives that involved comparisons based on financial and non-financial criteria. The HDD emerged as the superior option both in terms of cost and non-financial criteria.

#### 4.2.1 FINANCIAL CRITERIA

The financial evaluation of each option consisted of the following components:

- capital costs, determined based on AACE Class 5 estimates;
- a Monte Carlo analysis used to help assess the cost range of each alternative; and
- Net Present Value, Cash Flow and Rate Payer Impact calculations.

## 4.2.1.1 Capital Cost Estimates

The capital cost estimates used for evaluating the three technically viable alternatives were completed in accordance with the AACE International Recommended Practice No. 10S-90 Cost Engineering Terminology and the more detailed Recommended Practice No. 17R-97 Cost Estimate Classification System. The estimates were completed with a Class 5 level of project definition, which is the recommended practice suitable for project screening. The AACE Recommended Practices recognizes that estimating is a process whereby successive estimates are prepared to be followed by a 'go/no-go' decision upon continuation into the succeeding phase – in this case continued engineering efforts to support a Class 4 estimate.

The screening analysis was completed in 2009 utilizing Class 5 estimates which did not include escalation or Allowance for Funds Used During Construction ("AFUDC"). Escalation and AFUDC are proportional to the total capital cost and therefore do not impact the alternatives analysis. The capital cost estimates in 2009 dollars for these alternatives are:



| HDD         | \$7.4 million  |
|-------------|----------------|
| TP Re-Route | \$10.3 million |
| IP Re-Route | \$10.7 million |

The CPCN Guidelines specify Class 4 estimates as a default standard for alternatives analysis, but do provide for some judgement to be applied by the Applicant in cases where the Applicant believes that a different class of estimate is more appropriate. TGI made the decision that the 40% gap between the Large Angle HDD and the TP Re-Route options based on the Class 5 estimates, coupled with the results of the non-financial analysis indicating that the best option was the HDD option, was sufficient to eliminate the TP and IP Re-Route options without performing a Class 4 estimate for all three alternatives. The expense of preparing Class 4 estimates for all alternatives was significant (TGI expects it would cost over \$100,000 and take 4 months to complete) and added minimal additional value in the circumstances.

#### 4.2.1.2 Preliminary Monte Carlo Analysis

As an additional review of the estimated capital costs, TGI carried out a preliminary Monte Carlo cost analysis on the three technically viable alternatives and the results are shown in Appendix G. This analysis further illustrates that HDD is the most cost effective of the three alternatives.

To assess the sensitivity of the HDD cost estimate, TGI re-ran the analysis for the HDD alternative assuming the scenario that the first drill attempt was unsuccessful whereby additional costs to TGI would be incurred:

- due to encountering unforeseen or changed sub-surface conditions from those disclosed by TGI to form the basis of the contract with the contractor;
- high demand for contractors in the market place; and
- through no fault of the contractor, it could not successfully drill a stable bore hole to allow the start of the pullback of the line pipe and therefore TGI would need to compensate the contractor for its costs on the unsuccessful attempt before considering the likelihood of success by proceeding with the second attempt at TGI's cost.

Based on this low probability of occurrence event, the results of this more conservative model indicate that the cost estimates only overlap if a comparison is made between the P90 (worst case outcome) for the HDD option versus the P10 (best case outcome) for the next lowest non-HDD cost option.


Furthermore, as has been done on previous projects, TGI will re-run the Monte Carlo analysis to verify the trend in project costs once the following updated information is available for the Project:

- Owner supplied material costs after tendering for the key components;
- HDD pipeline construction costs after tendering for a prime contractor.

#### 4.2.2 NET PRESENT VALUE, CASH FLOW AND RATE PAYER IMPACT

The Company prepared financial analyses based on as-spent costs for each viable alternative. The initial direct capital costs were prepared in 2009 dollars and escalated to as-spent costs when the project capital is spent in 2010 and 2011. Tables 4-1 and 4-2 present the project cost elements in the original 2009 dollars and as-spent dollars for each of the viable alternatives and show that the HDD alternative is significantly lower than either the TP Reroute or the IP Reroute alternatives.

| Class 5 Estimate in \$2009                                  | Large Angle HDD<br>(\$000's) | TP-ReRoute Alternative<br>(\$000's) | IP-ReRoute Alternative<br>(\$000's) |
|-------------------------------------------------------------|------------------------------|-------------------------------------|-------------------------------------|
| 1 Pipe                                                      |                              |                                     |                                     |
| 2 Project Management, Engineering, Consultation, Inspection | 995                          | 685                                 | 761                                 |
| 3 Project Development Costs                                 | 571                          | 571                                 | 571                                 |
| 4 Pipe & Coating Materials                                  | 241                          | 959                                 | 1,527                               |
| 5 River Crossing HDD Installation & Pipeline Construction   | 3,958                        | 4,165                               | 5,753                               |
| 6 Permits                                                   | 109                          | 134                                 | 134                                 |
| 7 CPCN Development Costs <sup>1</sup>                       | 200                          | 200                                 | 200                                 |
| 8 Sub-Total - Pipe                                          | 6,072                        | 6,714                               | 8,945                               |
| 9                                                           |                              |                                     |                                     |
| 10 Land/Land Rights                                         |                              |                                     |                                     |
| 11 Land/Land Rights                                         | 102                          | 2,293                               | 487                                 |
| 12                                                          |                              |                                     |                                     |
| 13 Abandonment & Removal                                    |                              |                                     |                                     |
| 14 Abandonment & Removal Costs                              | 1,250                        | 1,270                               | 1,270                               |
| 15                                                          |                              |                                     |                                     |
| 16 Total Direct Capital Costs <sup>2</sup>                  | 7,424                        | 10,277                              | 10,703                              |
|                                                             |                              |                                     |                                     |

#### Table 4-1: Capital Cost Comparison Summary for Viable Alternatives \$2009

Notes

1 The CPCN Development Costs (line 7) include Legal, BCUC and Monte Carlo costs.

2 The Total Direct Capital Costs (line 16) include Project Development costs of \$571K (line 3) and CPCN Development costs of \$200K (line 7).



| Class 5 Estimate in \$ As-Spent            |                          | Large Angle HDD<br>(\$000's) | TP-ReRoute Alternative<br>(\$000's) | IP-ReRoute Alternative<br>(\$000's) |
|--------------------------------------------|--------------------------|------------------------------|-------------------------------------|-------------------------------------|
| 1 Pipe                                     |                          |                              |                                     |                                     |
| 2 Project Management, Engineering,         | Consultation, Inspection | 1,028                        | 711                                 | 789                                 |
| 3 Project Development Costs                |                          | 571                          | 571                                 | 571                                 |
| 4 Pipe & Coating Materials                 |                          | 247                          | 985                                 | 1,569                               |
| 5 River Crossing HDD Installation & F      | Pipeline Construction    | 4,155                        | 4,373                               | 6,041                               |
| 6 Permits                                  |                          | 112                          | 139                                 | 139                                 |
| 7 CPCN Development Costs <sup>1</sup>      |                          | 206                          | 206                                 | 206                                 |
| 8 Sub-Total - Pipe                         |                          | 6,319                        | 6,985                               | 9,314                               |
| 9                                          |                          | ,                            | ,                                   | ,                                   |
| 10 Land/Land Rights                        |                          |                              |                                     |                                     |
| 11 Land/Land Rights                        |                          | 106                          | 2,391                               | 508                                 |
| 12                                         |                          |                              |                                     |                                     |
| 13 Abandonment & Removal                   |                          |                              |                                     |                                     |
| 14 Abandonment & Removal Costs             |                          | 1,311                        | 1,332                               | 1,332                               |
| 15                                         |                          |                              |                                     |                                     |
| 16 Total Direct Capital Costs <sup>2</sup> |                          | 7,736                        | 10,708                              | 11,154                              |
| 17                                         |                          | -                            | -                                   | -                                   |
| 18 AFUDC                                   |                          | 234                          | 345                                 | 354                                 |
| 19                                         |                          |                              |                                     |                                     |
| 20 Total Project Costs                     |                          | 7,970                        | 11,053                              | 11,507                              |
|                                            |                          |                              |                                     |                                     |

#### Table 4-2: Capital Cost Comparison Summary for Viable Alternatives \$ As-Spent

Notes

1 The CPCN Development Costs (line 7) include Legal, BCUC and Monte Carlo costs.

2 The Total Direct Capital Costs (line 16) include Project Development costs of \$571K (line 3) and CPCN Development costs of \$206K (line 7).

TGI evaluated the incremental cost of service, cash flow and rate impacts associated with the three technically viable alternatives over 25 and 60 year periods. The 60 year time horizon was chosen to be consistent with the assumed useful life of the assets. The incremental cost of service estimates are based on TGI's currently approved capital structure, cost of capital and tax treatment.

The results of the financial analysis for each of the viable alternatives are summarised in Table 4-3 below and show that the HDD alternative is the lowest cost alternative on all the financial measures listed. The results also show that the TP and IP re-route alternatives result in a higher rate impact than the recommended HDD alternative.



|                                                    | HDD    | TP Re-route | IP Re-route |
|----------------------------------------------------|--------|-------------|-------------|
| Total Direct Capital Costs (\$M) - As Spent        | 7.7    | 10.7        | 11.2        |
| AFUDC (\$M)                                        | 0.3    | 0.3         | 0.4         |
| 2012 Rate Impact (\$/GJ)                           | 0.0093 | 0.0112      | 0.0120      |
| Levelized Rate Impact 25 years (\$/GJ)             | 0.0046 | 0.0062      | 0.0071      |
| Levelized Rate Impact 60 years (\$/GJ)             | 0.0042 | 0.0059      | 0.0066      |
| Levelized Incremental Revenue Requirement (\$M)    | 0.7    | 0.9         | 1.1         |
| Incremental Revenue Requirement NPV 25 years (\$M) | 8.7    | 11.9        | 12.5        |
| Incremental Revenue Requirement NPV 60 years (\$M) | 9.7    | 13.4        | 16.2        |
| Net Cash Flow NPV 25 years (\$M)                   | 5.9    | 8.3         | 8.4         |
| Net Cash Flow NPV 60 years (\$M)                   | 5.9    | 8.2         | 9.9         |
| 2012 Incremental Rate Base (\$M)                   | 8.0    | 11.1        | 11.6        |

#### Table 4-3: Incremental Cost of Service and Rate Impact Summary

Complete financial schedules showing the annual incremental revenue requirement, rate base and cash flow for each viable alternative are included in Appendix H.

#### 4.2.3 NON-FINANCIAL CONSIDERATIONS

TGI considered non-financial factors in selecting the preferred option. The non-financial factors also favoured the Large Angle HDD option.

In this section TGI describes

- Additional assessments undertaken to complete the non-financial analysis;
- The qualitative advantages and disadvantages of each option; and
- The weighting methodology employed to assist in the non-financial analysis.

#### 4.2.3.1 Additional Assessments

Environmental and archaeological considerations were important components of the nonfinancial analysis. TGI retained Westland Resource Group ("Westland")<sup>5</sup> to evaluate the environmental aspects of the HDD and TP and IP Re-route alternatives. The results of this study are summarized in their report Shoreacres Aerial Replacement Project – Route Selection – Environmental Screening Report, a copy of which is attached as Appendix I. This phase of

<sup>&</sup>lt;sup>5</sup> Westland Resource Group Inc. – a multidisciplinary consulting company whose services include environmental, land use and social-economic impact assessments.



the work also included a preliminary archaeological assessment conducted by Eagle Vision Geomatics and Archaeology ("Eagle Vision")<sup>6</sup>. A copy of their report is attached as Appendix J.

#### 4.2.3.2 Advantages and Disadvantages

The non-financial advantages and disadvantages of each option are summarized below.

#### HDD

#### Advantages

- This option has relatively low environmental impact with no in-stream works required.
- New ROW through Crown land would be required, but as the ROW would be minimally disturbed by construction and operation, the approvals are expected to be relatively straight forward.
- There will be relatively low landowner impact as construction on the west side will be on TGI owned land and construction on the east site is in a remote location.
- This option has very little exposure to natural hazards.
- The option is operationally simple with low operation and maintenance costs.
- This option exceeds the twenty year forecast capacity requirements.

#### Disadvantages

- The access and workspace for pipe fabrication on the east side of the river will require some road construction and clearing.
- There is a construction risk of failure with any HDD. However, the CCI report concludes that the risk parameters are acceptable when compared with current industry practice, and can be addressed with standard mitigation techniques.

<sup>&</sup>lt;sup>6</sup> Eagle Vision Geomatics & Archaeology Ltd. – a company primarily owned and operated by members of the Ktunaxa Nation providing a variety of archaeological and GIS mapping services to clients in the Columbia and Kootenay regions of British Columbia.

# TP Re-Route

# Advantages

- The proposed route impacts relatively few property owners, most of whom are industrial, resulting in low land use impact. The risk of ROW acquisition difficulties is also low since much of the proposed route is in a utility corridor.
- The pipeline would be installed with standard trench and cover and transportation corridor crossing methods.
- This option exceeds the twenty year forecast capacity requirements.

#### Disadvantages

- The re-route is relatively long with a considerable expense for land owner consultation and statutory ROW acquisition.
- The option requires a number of highway, road, and railway crossings.
- It may not be possible to acquire statutory ROW for the entire length between the two bridges where there is little or no land available between the road allowance and the Kootenay River on one side and the Kootenay Canal on the other, requiring construction within a road ROW or other non standard route alternatives.
- In order to carry the proposed TP pipeline, the bridges would require seismic retrofits, which must be approved and coordinated by the owner.
- The proposed pipeline corridor must cross or come close to a number of sites that have been identified in the Environmental Screening Report as contaminated.
- Some of the route will require blasting, the extent of which is only estimated at this time.
- Some portion of the route will likely have to be constructed in close proximity to the Kootenay River, thus adding additional permit requirements and involving construction windows.
- The route may have to cross some Crown land which would impact the OGC approval schedule.
- The route is in proximity to a number of domestic water wells which will require monitoring before, during and after the Project.

• The pipeline will have to cross some BC Hydro property and will have to penetrate the concrete liner of the Kootenay Canal.

#### IP Re-Route

#### Advantages

- The IP Re-route option requires less statutory ROW acquisition than the TP option. Use of road allowance along Blewett Road is acceptable within TGI standards for IP pipelines.
- This option meets the twenty year forecast capacity requirements, although it would likely require reinforcement shortly after this period.

#### Disadvantages

The disadvantages for the IP Option are essentially the same as the TP Option with the following additional disadvantages:

- The TP / IP station would very likely be located on fee owned land which would require some property to be purchased.
- The TP / IP station adds complexity to the Project, as well as post-Project operations.
- The IP option requires the use of a larger pipe size to offset the reduced capacity of the lower operating pressure.
- All of the stations and farm taps between Shoreacres and Nelson would have to be upgraded for IP inlet pressures.
- Lowering the system operating pressure to IP would have a significant negative impact on future expansion in the service area.

#### 4.2.3.3 Weighted Scoring

TGI evaluated and compared the non-financial attributes of the three options summarized in the preceding section. All of the criteria were given a weighted score in order to quantify the relative merits of each option. The non-financial criteria used in the evaluation were: natural hazard vulnerability, safety, environmental, land issues, First Nations, operational impacts, system capacity and aesthetics. Definitions for these criteria are attached as Appendix K. The screening analysis demonstrates that the HDD option has the best score for almost all of the screening factors considered.



The results of the screening analysis are summarized in Table 4-4.

| Criterion                    | Weight | HDD   |          | TP Re-Route |          | IP Re-Route |          |
|------------------------------|--------|-------|----------|-------------|----------|-------------|----------|
|                              |        |       | Weighted |             | Weighted |             | Weighted |
|                              |        | Score | Score    | Score       | Score    | Score       | Score    |
| Natural Hazard Vulnerability | 20     | 5     | 100      | 4           | 80       | 4           | 80       |
| Safety                       | 5      | 5     | 25       | 4           | 20       | 4           | 20       |
| Environmental                | 10     | 5     | 50       | 2           | 20       | 2           | 20       |
| Land issues                  | 10     | 5     | 50       | 3           | 30       | 3           | 30       |
| First Nations                | 15     | 4     | 60       | 5           | 75       | 5           | 75       |
| Operational Impacts          | 5      | 5     | 25       | 4           | 20       | 3           | 15       |
| System Capacity              | 5      | 5     | 25       | 5           | 25       | 2           | 10       |
| Aesthetics                   | 5      | 5     | 25       | 4           | 20       | 2           | 10       |
| TOTALS                       | 100    |       | 360      |             | 290      |             | 260      |

#### Table 4-4: Screening Matrix (Non-Financial Factors)

The rationale for the scores for each of the criteria is also included in Appendix K.

The non-financial screening matrix shows the HDD Alternative as having the highest overall score.

# 4.3 Conclusion – Preferred Option

TGI believes that it is in the public interest to upgrade the Kootenay River crossing using the HDD method. The HDD option will address both the slope instability and the continuing deterioration condition issues, has the lowest capital cost estimate, has the lowest customer rate impact, and has the best score for non-financial screening criteria. TGI believes that the evidence supporting the selection of the HDD alternative is sufficiently robust, that the AACE Class 5 cost estimates used in the analysis are adequate to support this conclusion and that preparation of Class 4 estimates for the alternatives is not necessary.



# 5 PROJECT DESCRIPTION

The Project involves replacing the existing NPS 8 aerial crossing of the Kootenay River near the community of Shoreacres with an NPS 6 crossing using the HDD method. The Project is comprised of the following major components:

- a) Installation and construction of a new NPS 6 crossing using the HDD construction method.
- b) Decommissioning of the existing NPS 8 aerial crossing and removal of the crossing pipe and structure.
- c) Abandonment of approximately 650 m of NPS 6 transmission pressure pipe between the east terminus of the existing crossing and the new HDD tie-in point.

Each of these components is discussed below.

#### 5.1 Project Components

#### 5.1.1 INSTALLATION OF HDD CROSSING

The Project will use the HDD construction method to replace the existing Kootenay River aerial crossing.

The Kootenay River directional drill length will be approximately 880 m. The drill will start close to the west tower of the existing crossing structure and will be on property owned by TGI. The crossing will be angled to the north east which will allow the new line to avoid the area of unstable slope on the east bank. The drill path will cross both the Slocan and Kootenay rivers and will exit on a flat plateau on or close to the existing ROW on the east side of the Kootenay River approximately 650 m north of the east terminus of the existing crossing. The pipe will be prefabricated into one string along the existing TGI ROW north of the exit point.

The technical requirements and other design and construction components and requirements of installing a HDD crossing are described in section 5.2.

#### 5.1.2 ABANDONMENT OF TP PIPE

Approximately 650 m of existing NPS 6 pipe between the new exit point tie in and the east terminus of the existing aerial crossing will be abandoned in place. The ROW between the new tie-in point and the small piece of property owned by TGI at the eastern terminus of the crossing will be returned to the Crown.



#### 5.1.3 DECOMMISSIONING

After the new crossing is operational, all of the above ground components of the aerial crossing will be removed. At the east terminus of the existing crossing some site restoration including removal of the fencing and re-vegetation will be completed.

#### 5.2 Design and Construction of the HDD Crossing

This section describes the design and construction of the HDD crossing. An aerial photograph of the proposed crossing site is attached as Appendix L. The photograph shows the existing line and crossing, the proposed HDD path and the temporary work space required at both ends of the drill path. The cross hatched portion of the ROW to the right of the temporary work space on the east side of the river will be used for stringing the pipe for the crossing.

#### 5.2.1 HDD METHOD OF CONSTRUCTION

HDD is a common industry accepted method for replacing river crossings and for installations where other methods would be impossible or disruptive, for example, crossings of existing highways and railroads. TGI has utilized HDD's on numerous occasions to avoid both technical and environmental concerns associated with other construction methods.

The methodology requires temporary "set-up" areas on both sides of the proposed crossing. On the entry side, a drilling machine is positioned. This machine, using a variety of guidance technologies, first drills a small diameter pilot hole between the entry and exit points. This is followed by a second drilling process which enlarges the pilot hole to a diameter larger than the pipeline to be installed.

On the opposite side of the proposed crossing (the exit point) a pipe "lay-up" area is required. The space requirements on this side are considerably larger since this area is used to weld together the pipe for the actual crossing. The drilling machine is then used to pull the pipe through the previously enlarged hole. There is sufficient lay-up area to let the contractor to fabricate the entire length of pipe reducing complexity and risk during the pull back stage.

The final step involves "tie-ins" to the existing pipeline upstream and downstream of the entry and exit points.

# 5.2.2 USE OF TGI RIGHT OF WAY

The drill entry point will be located close to the west tower of the existing aerial structure on land owned by TGI.

The exit point will be on or close to the existing ROW on the east side of the Kootenay River. However, temporary working space will be required at certain locations during HDD pipe string



pull back and other installation staging. These working spaces will be included while securing ROW from Crown Land.

#### 5.2.3 ACQUISITION OF CROWN LAND

A narrow strip of Crown Land will be needed for ROW for the new HDD alignment. The Project will thus require acquisition of approximately 475 m of new ROW across the river and on the east shore until the drill path rejoins the existing ROW.

During the OGC Pipeline Application for this Project, filing a License of Occupation will be required to secure the approximately 475 m of 18.0 m wide new ROW. After construction is completed a survey of the new alignment will be conducted and the License of Occupation will be converted into a new ROW. However, the pipeline from this location to the tie-in point of the new HDD crossing will be abandoned in place and the ROW for this section of pipeline will be returned to the Crown.

#### 5.2.4 OTHER UTILITIES

There are no electrical, water or other third party utility services that will be impacted by the Project.

#### 5.2.5 ROADS, HIGHWAYS AND RAILWAYS

The Project does not cross any roads or railways.

Consultation with local residents has been started as required to ensure the increased traffic and activity associated with construction at the drill entry site does not adversely impact the residents of Shoreacres. No significant impacts or disruptions to local businesses are expected.

Some road construction will be required to access the east side of the river but the area is relatively remote and this activity is not expected to adversely impact the public.

#### 5.2.6 **RESTORATION**

The property owned by TGI and used as the drill entry site is visible to the local residents and will be restored. Restoration of the ROW and temporary work space on the east side of the river will meet both Provincial and TGI standards.

The fenced compound on the east side of the river that is currently the terminus of the aerial crossing and the ROW between that compound and the new tie-in point will be restored to remove any disturbance created by construction activities associated with this Project. This will include site cleanup and re-vegetation.



#### 5.2.7 NOISE CONTROL

The drill entry site is located close to residents in the community of Shoreacres. Noise monitoring and control will comply with local guidelines. Noise concerns at the drill exit location are not anticipated as there are no immediate neighbours.

#### 5.2.8 SAFETY AND SECURITY

HDD site safety and security will be maintained during the course of the installation including all working and non-working hours inclusive of weekends. A comprehensive safety plan will be developed by the HDD contractor in compliance with TGI standards, WorkSafeBC regulations, and the requirements of other impacted stakeholders.

#### 5.3 **Project Schedule**

Detailed engineering and construction will be undertaken starting in 2010 to be completed by the end of 2011 with specific activities and durations as follows:

| Activity                                  | Duration                      |
|-------------------------------------------|-------------------------------|
| Concept Development                       | March – December 2009         |
| OGC Pipeline Application                  | October 2009 – September 2010 |
| CPCN Preparation                          | November 2009 – July 2010     |
| CPCN Filing                               | July 2010                     |
| CPCN Review and Approval                  | July 2010 – November 2010     |
| Detailed Engineering                      | November 2010 – March 2011    |
| Tendering (Materials)                     | December 2010 – March 2011    |
| Tendering (HDD)                           | March 2011– April 2011        |
| Construction                              | April 2011 – July 2011        |
| In Service                                | July 2011                     |
| Aerial Crossing Removal and Site Clean up | August 2011 – October 2011    |

#### Table 5-1: Schedule Milestones

A more detailed schedule is attached as Appendix M. The schedule contemplates construction starting in the Spring when demand for contractors is lower and when site conditions are favorable.



#### 5.4 Resource Requirements

#### 5.4.1 **PROJECT MANAGEMENT**

A TGI project manager will manage the Project and implement the execution plan for each phase of the Project. Figure 5 -1 outlines the functional organization chart for management of this Project.

#### Figure 5-1: Project Functional Organization Chart



The Executive Sponsor for the execution of the Project is Bob Samels, Vice-President, Business Planning. The Project Manager is Neil Bolger, P.Eng.

#### 5.4.2 DESIGN AND QUALITY CONTROL

TGI engineering resources will be utilized for the design of the land-based portions of the Project including the tie-ins. However, the specialized services required for environmental



management, geotechnical investigation and analysis, HDD pipe and profile design, and construction inspection will be contracted to individuals and companies possessing the demonstrated skills and experience to complete the work. These individuals and companies will be expected to ensure that public and worker safety, quality workmanship and environmental compliance are maintained throughout the Project.

TGI operating personnel will ensure all facilities are efficiently placed into operation upon completion of construction and conform to TGI standards and industry practices.

#### 5.4.3 CONSTRUCTION SERVICES

Potential prime construction contractors will be pre-qualified prior to the release of the tender documents. For the HDD crossing, the prime contractor will be responsible for the drilling and installation of the pipeline across the Kootenay River. The lowest cost qualified contractor will be selected by TGI at the close of the procurement process.

#### 5.4.4 MATERIALS

All owner-supplied materials will be purchased by TGI through the Company's standard procurement process. Owner supplied materials will be purchase from the lowest-cost qualified bidder.

#### 5.5 Other Applications and Approvals

#### 5.5.1 OGC APPLICATION

The design, construction and operation of the Kootenay River Crossing transmission pipeline are subject to the British Columbia Pipeline Act and Regulations, which fall under the jurisdiction of the BC Oil and Gas Commission. Applications to the OGC for projects done within an existing ROW normally require a relatively simple "Notice of Intent" process. However, because the Project involves the acquisition of new ROW on Crown Land, a more complex Pipeline Application is required. TGI filed the Pipeline Application on February 19, 2010. A Pipeline Application is a significant process with considerable technical scrutiny on the Project by the Provincial regulator. Public and First Nations Consultation, Right of Way acquisition, archaeological requirements, land status and land use planning, design reviews, timber clearing permits, environmental permits / approvals for work in and around the Kootenay River are all components of the Pipeline Application. Each component must receive OGC approval prior to the start of construction and constitute a significant regulatory process in addition to the CPCN. A Pipeline Application can take up to one year for approval. The current schedule assumes nine months but an extension to twelve months will not affect the in-service date of the Project. TGI will update the Commission when the OGC approves the Pipeline Application.



#### 5.5.2 OTHER PENDING OR ANTICIPATED APPLICATIONS / CONDITIONS

A qualified environmental professional working in conjunction with the TGI Environmental Affairs Department will assist the Project in identifying permits / approvals required and in the development of an Environmental Protection Plan including an Environmental Emergency Preparedness and Response Plan.

The Project is not likely to require an Environmental Assessment Certificate pursuant to the British Columbia Environmental Assessment Act. However, the Project may require a screening under the Canadian Environmental Assessment Act as a result of the Federal notifications/approvals that will be required to comply with provisions of the Fisheries Act and Navigable Waters Protection Act.

Agency notifications, permits and approvals are anticipated under, but not limited to, the Fisheries Act, Species at Risk Act, Navigable Waters Protection Act, Water Act, Forest and Range Practices Act, Heritage Conservation Act and Land Act. The terms and conditions outlined in these permits and approvals are legally binding and will be adhered to during the HDD crossing, aerial crossing removal, and pipeline abandonment portions of the Project.

As indicated above, the Project will involve the acquisition of new ROW but will not require any re-zoning.

The decommissioning and demolition of the existing aerial crossing may trigger regulatory agency interest. The approvals for the decommission plan will be coordinated by the OGC with additional Department of Fisheries and Oceans and Transport Canada notices required.



#### 5.6 Risk Analysis and Management

The primary risks to cost and schedule, and the control / mitigation strategies for this Project are identified in Table 5-2.

|   | KEY RISK                                | CONTROL / MITIGATION                                                                                                                                                                                          |
|---|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Project Management                      | Upon approval of the Project, a Project Execution Plan will be<br>issued to detail risks and mitigation strategies, including a Control<br>Budget based on material and HDD/Pipeline construction<br>tenders. |
| 2 | Stakeholder Impacts                     | Regular collaborative communication with all internal and external stakeholders and First Nations throughout duration of the Project.                                                                         |
| 3 | Construction Schedule                   | Ensure construction starts in the Spring when demand for contractors is lower and when site conditions are favorable.                                                                                         |
| 4 | Engineering / Construction<br>Resources | Use Terasen internal resources combined with consultants who have proven skills, HDD experience and availability.                                                                                             |
| 5 | Material Cost / Delivery                | Tender to known vendors and award to the lowest qualified bidder.                                                                                                                                             |
| 6 | HDD / Pipeline Contract Cost            | Optimize Total Contract Price via:                                                                                                                                                                            |
|   |                                         | 1) Lump Sum cost components for surface activities that can be best managed by the contractor; and                                                                                                            |
|   |                                         | 2) Unit Rates for unforeseen or variable subsurface risks to be shared between the contractor and TGI (e.g. mud fractures or extreme weather).                                                                |
| 7 | HDD / Pipeline Contractor<br>Capability | Tender to known contractors with proven experience; award to the lowest qualified bidder.                                                                                                                     |
| 8 | Geotechnical Conditions                 | Complete geotechnical and geophysical studies for internal feasibility analysis and for bidders information to reduce risk premiums in HDD contract.                                                          |

#### Table 5-2: Project Execution - Risk Control Summary

For an HDD contract, there will always remain some uncertainty with respect to subsurface conditions. TGI has conducted detailed geotechnical investigations along the drill path and it is expected that the geotechnical baseline report produced for the HDD contractors will reduce the uncertainty regarding subsurface conditions to an acceptable level. In designing procurement documents, it is possible to trade off risk for cost. While certainty is desirable, bidders can be expected to charge a significant risk premium to assume all risks that can have a material effect on the project cost. TGI will seek to structure the tender documents for the HDD contract in such a way as to arrive at an appropriate balance between price and risk. TGI expects that the additional geotechnical work will reduce, but not eliminate, the risk premium charged by bidders for assuming some geotechnical risk.



The project cost estimate outlined in section 6 already accounts for a risk premium charged by the HDD contractor commensurate with risk being shared efficiently between TGI and the HDD contractor. The preliminary Monte Carlo analysis described in section 4 suggests that the HDD option remains the most cost effective of the three viable alternatives even based on an adverse scenario where the first drill attempt is unsuccessful and TGI must bear part of the additional costs.

The risks listed in Table 5-2: Project Execution - Risk Control Summary are ranked in Table 5-3 below using a 5x5 risk matrix of likelihood and cost impact. TGI will continue to focus engineering and management resources on the issues that rank higher on the likelihood and cost impact scales in order to ensure that mitigation efforts continue to provide a reasonable balance between cost and risk. TGI proposes to complete a Monte Carlo analysis (see section 6) for the Project after the bids are received for the HDD contract. This will further refine the risk rankings and provide recommendations for any additional mitigation efforts.

The numbers in Table 5-3 below correspond to the key risks described in Table 5-1.



#### Table 5-3: Risk Ranking of Key Risks



# 6 PROJECT COST ESTIMATE

The Company prepared the Project cost estimate based on AACE Class 3 specifications, in accordance with the new CPCN Guidelines.

This section discusses:

- the Project cost estimate;
- the financial impacts; and
- the deferral account treatment of the costs prior to entering rates in 2012.

#### 6.1 Cost Estimate Details

The total capital cost of the Project presented in Table 6-1 below is estimated to be approximately \$8.3 million in as spent dollars. This cost estimate is based on preliminary Project definition and design and the individual cost elements consist of historical costs, non-binding quotations and projections. The expected accuracy of the cost estimate is +20 to -15%.



|    | Large Angle HDD Option                                                 | Estimate in \$2009<br>(\$000's) | Estimate in \$As-Spent<br>(\$000's) |
|----|------------------------------------------------------------------------|---------------------------------|-------------------------------------|
| 1  | Pipe                                                                   |                                 |                                     |
| 2  | Project Management, Engineering, Consultation, Inspection <sup>2</sup> | 1,697                           | 1,745                               |
| 3  | Temporary Workspace                                                    | 463                             | 483                                 |
| 4  | Pipe & Coating Materials                                               | 266                             | 276                                 |
| 5  | River Crossing HDD Installation & Pipeline Construction                | 3,345                           | 3,512                               |
| 6  | Tie in Construction                                                    | 220                             | 231                                 |
| 7  | Permits <sup>2</sup>                                                   | 169                             | 173                                 |
| 8  | CPCN Development Costs <sup>1</sup>                                    | 200                             | 206                                 |
| 9  | Sub-Total - Pipe                                                       | 6,361                           | 6,627                               |
| 10 |                                                                        |                                 |                                     |
| 11 | Land/Land Rights                                                       |                                 |                                     |
| 12 | Land/Land Rights                                                       | 190                             | 200                                 |
| 13 |                                                                        |                                 |                                     |
| 14 | Abandonment & Removal                                                  |                                 |                                     |
| 15 | Aerial Crossing Removals                                               | 1,000                           | 1,050                               |
| 16 | Retirement Costs                                                       | 165                             | 173                                 |
| 17 | Sub-Total - Abandonment & Removal                                      | 1,165                           | 1,223                               |
| 18 |                                                                        |                                 |                                     |
| 19 | Total Direct Capital Costs                                             | 7,717                           | 8,049                               |
| 20 |                                                                        |                                 |                                     |
| 21 | AFUDC                                                                  |                                 | 254                                 |
| 22 |                                                                        |                                 |                                     |
| 23 | Total Project Costs                                                    | 7,717                           | 8,304                               |
|    |                                                                        |                                 |                                     |

#### Table 6-1: Capital Cost

<u>Notes</u>

1 The CPCN Development Costs (line 8) include Legal, BCUC and Monte Carlo costs.

- 2 Line 2 (Project Management, Engineering, Consultation, Inspection) and Line 7 (Permits) of the table include the Project Development costs of \$528K and \$43K respectively. This amounts to a total of \$571K of the Project Development Costs.
- All capital cost estimates are based on an in-service date of July 2011 and aerial crossing removal completed by October 2011.
- Cost estimates include all engineering, procurement and construction costs, regulatory and environmental costs, and workspace acquisition costs.
- Steel pipe costs based on March 2008 vendor pricing and subject to market variation.

• Includes First Nations OGC Pipeline Application review funding and archaeological monitoring and review. Does not include accommodations.

- Escalation rates are based on forecasted general construction price index. Excludes significant changes to rates for market conditions for specialist HDD contractors.
- Meets AACE Class 3 level.

Cost estimates are based on the most recent studies and information currently available to TGI and an in-service date of July 2011. The estimate excludes GST and HST. Current market prices have been used for the expected contracted construction. In particular, the HDD contract estimate, which is part of the river crossing HDD installation and pipeline construction, is based on construction during the spring, summer or fall seasons. Construction during the winter is typically 5 to 15% more costly. Allowances have also been included for temporary workspace and procedures to minimize impacts to local residents.



The cost estimate for the Project has risen from \$8.0 million at the Class 5 screening stage to \$8.3 million at the Class 3 stage (in as-spent dollars). This is due mainly to an increase in the estimated cost to obtain a guaranteed completion contract for the HDD.

In order to provide more certainty regarding the cost of the Project, the Company, in light of the direction issued in Commission Order C-2-09<sup>7</sup>, proposes to file with the Commission a compliance report (the "Report") at the time of award providing a description of the HDD contract; identification of the components of the Project where cost risk is with the utility and its ratepayers; a description and analysis of risk allocation; a detailed control budget for the Project; an updated Project schedule; and cost estimates that have a 50 percent probability ("P50") and a 90 percent probability ("P90") that the actual cost of the Project will not exceed the cost estimates. The control budget will be consistent with the P50 cost estimate and will conform at a minimum to the level of detail as set out in Table 6-1.

#### 6.2 Financial Analysis

The Company also prepared the financial analysis for the final project cost estimate which includes the incremental cost of service, cash flow and rate impacts over 25 and 60 year periods. Table 6-2 presents a summary of the financial schedules included in Appendix H. The results show that for the HDD alternative, the impact to customer rates in 2012 is approximately \$0.009 per GJ and levelized over the analysis period is approximately \$0.004 per GJ before taking into account the benefits of avoided costs associated with future upgrades. For a typical TGI Interior residential customer consuming an average 80 GJ per year in 2012 this would equate to approximately 75 cents per annum.

<sup>&</sup>lt;sup>7</sup> Commission Order No. C-2-09 granted TGI's Application for a Certificate of Public Convenience ad Necessity to construct and operate the Fraser River Crossing Upgrade Project.



|                                                    | HDD     |
|----------------------------------------------------|---------|
|                                                    | Class 3 |
| Total Direct Capital Costs (\$M) - As Spent        | 8.0     |
| AFUDC (\$M)                                        | 0.3     |
| 2012 Rate Impact (\$/GJ)                           | 0.0093  |
| Levelized Rate Impact 25 years (\$/GJ)             | 0.0048  |
| Levelized Rate Impact 60 years (\$/GJ)             | 0.0044  |
| Levelized Incremental Revenue Requirement (\$M)    | 0.7     |
| Incremental Revenue Requirement NPV 25 years (\$M) | 9.0     |
| Incremental Revenue Requirement NPV 60 years (\$M) | 10.0    |
| Net Cash Flow NPV 25 years (\$M)                   | 6.2     |
| Net Cash Flow NPV 60 years (\$M)                   | 6.1     |
| 2012 Incremental Rate Base (\$M)                   | 8.3     |

#### Table 6-2: Financial Analysis of HDD Final Project Cost

#### 6.3 Deferral Account Treatment

The pipe and land capital costs of \$6.8 million, as set out in lines 9 and 11 of Table 6-1 of this Application, will be held in work-in-progress until the asset is available for use, estimated at July 1, 2011, at which time depreciation will commence and the assets will be included in plant in service as transmission mains and land rights.

As agreed to in TGI's 2010 to 2011 Revenue Requirements Application Negotiated Settlement Agreement (the "NSA") the Company seeks deferral treatment for 2011 of the 2011 cost of service associated with this Project.<sup>8</sup> Since customer rates have been set for 2011 through the NSA, TGI proposes to capture the cost of service related to the Project that will be incurred prior to January 1, 2012 in three non-rate base deferral accounts and to enter these costs into rate base on January 1, 2012. The costs consist of the following:

- Retirement costs of \$1.223 million plus AFUDC, consisting of the costs of abandoning or removing the existing plant (the aerial crossing and 650 meters of NPS 6 TP pipe) as set out in Table 6.1 of this Application, Line 16;
- The loss on removal of the remaining net book value of that plant, estimated at \$0.166 million at July 2011; and

<sup>&</sup>lt;sup>8</sup> NSA Appendix A to Commission Order G-141-09, page 11 of 110, clause 18



• The 2011 cost of service related to the plant in service, consisting of depreciation expense, income taxes and earned return, estimated at \$0.284 million.

At January 1, 2012, TGI proposes that the retirement costs and loss on disposal be transferred to the existing Removal Cost Deferral Account and Gains and Losses on Asset Disposition deferral account. Since neither of these two accounts currently has an approved recovery period, for purposes of determining the cost of service and cash flow impacts in this CPCN Application TGI has assumed a three year amortization period, although the actual amortization period will be determined as part of the Company's next Revenue Requirements application. The 2011 cost of service will be transferred to a rate base deferral account at the same time, also with a three year amortization period.



# 7 OVERVIEW OF ENVIRONMENTAL AND SOCIO-ECONOMIC ASSESSMENTS

The Company considered environmental and socio economic factors as non-financial factors in its assessment, and further detail is provided in this section.

#### 7.1 Environmental Assessment

The HDD alignment runs beneath the Kootenay River and its riparian margins that are considered to be an extremely environmentally sensitive site with significant fisheries values and species at risk present. A preliminary environmental screening for the Project was undertaken by Westland Resource Group. Based on the preliminary environmental assessment work completed by Westland, the Project is the preferred option among three feasible Kootenay River crossing alternatives from an environmental and land use perspective because anticipated environmental risk is relatively low.

#### 7.1.1 ENVIRONMENTAL SCREENING REPORT

The results of the work undertaken by Westland are outlined the Shoreacres Aerial Replacement Project Route Selection Environmental Screening Report, a copy of which is attached as Appendix I. The report summarizes that:

- land disturbances will be minimal;
- there are fewer potential environmental risks such as contaminated sites and domestic water resources;
- minimal new ROW will be required; and
- the proposed HDD crossing will not impact the fish or fish habitat resources of the Kootenay and Slocan Rivers.

Based on preliminary environmental assessment work completed by Westland, the Project will not require an Environmental Assessment Certificate pursuant to the British Columbia Environmental Assessment Act. However, the Project may require a screening under the Canadian Environmental Assessment Act as a result of the Federal notifications/approvals that will be required to comply with provisions of the Fisheries Act and Navigable Waters Protection Act.

# 7.1.2 FURTHER PLANS

Environmental sensitivities and proposed Project impacts will be documented during a baseline environmental site condition assessment which will include forestry/vegetation, species at risk,



fish and wildlife and their habitat, surface water/ground water resources, soils and archaeology. Limited soil sampling will be undertaken to determine the potential for contamination.

Appropriate mitigation strategies will be developed to offset any potential negative environmental impacts associated with the proposed HDD, aerial crossing removal and pipeline abandonment portions of the Project. All required environmental permits and approvals for the Project will be identified and applied for during the detailed engineering phase of the Project.

Detailed environmental specifications will be prepared as part of the Project tendering process to ensure the contractor(s) are aware of the Project's environmental requirements in addition to TGI's internal environmental standards. A Project specific Environmental Management Plan will be developed by the successful contractor(s) prior to Project commencement. Environmental monitoring will be undertaken during all sensitive aspects of the work program that have the potential to impact on the Kootenay River and its riparian margins. An environmental monitor will be assigned to the project and will have "stop work authority" in the event that works underway have the potential to impact the natural environment.

# 7.2 Contaminated Soils

The potential for soil contamination exists within the Project area. As such, a soils management plan for contaminated soils will be required as part of the Project.

Before site disturbance associated with the HDD and removal of the aerial crossing and abandoning the section of pipe on the east side of the crossing, limited soil sampling will be completed to identify any potential areas of contamination within the Project area. Dependent on the results of the environmental site assessment, some baseline soil sampling may be required to identify areas of contamination before the HDD and removal of the aerial crossing. Any contaminated soil that is disturbed during the course of the HDD, removal of the aerial crossing, and abandonment of the pipeline will be disposed of in accordance with applicable environmental regulations.

#### 7.3 Archaeology

A preliminary archaeological field reconnaissance was undertaken by Eagle Vision Geomatics & Archaeology Ltd. and is documented in their Preliminary Field Reconnaissance & Final Report, a copy of which is attached as Appendix J. No significant archaeological issues were identified.

The field work completed to date is a screening level report for purposes of evaluating the three technically viable alternatives. A final field reconnaissance will be required for the HDD alternative.



#### 7.4 Socio-Economic Assessment

The economic impact of the Project to the regional area is expected to be limited. The HDD contract and the major materials will likely be procured from out-of-province sources since these resources are not readily available in B.C. Most of the professional services, such as geotechnical engineering and environmental assessments have been or will be provided by personnel based in B.C., with some provided by personnel in the local area. Expenditures by the small work force will be of some benefit to local businesses.

A positive impact for the Project will be the decreased visual impact of the crossing when the aerial structure is removed. This will be a benefit to both the nearby residents and the Ward's Ferry Trail.

As discussed in section 3.5, the Project's greatest impact, however, is the prevention of major social and economic consequences to the region that could result from a failure of the crossing.

The local Regional District and the City of Nelson have been informed of the Project and will be consulted on issues of concern including traffic patterns, removal and replacement of vegetation, and the supply and disposal of water for drilling and testing purposes.



# 8 PUBLIC CONSULTATION

Public consultation and communication are key elements of the TGI project development program. TGI identifies key community stakeholders in order to communicate project intent, respond to public interest and potential issues, and gather information that will assist in developing plans to construct, schedule and operate new facilities.

In this section, TGI provides:

- An overview of TGI's consultation plan;
- A list of Project stakeholders;
- A summary of consultation activities and input received; and
- Future consultation plans.

TGI has also engaged First Nations in the area, which is discussed in Section 9.

#### 8.1 Overview of Consultation Plan

The Project Communication Plan is included in Appendix N. The plans, responsibilities and coordination are shared between TGI's Community Relations and Property Services team members.

The focus of the plan is to ensure that area residents and stakeholders are informed about the Project and have access to information in a timely and efficient manner. The plan identifies all of the stakeholders in the area, including residents, businesses, industry and municipal, regional, provincial and federal authorities.

Contact has been made with all stakeholders and will continue on an on-going basis, to maintain dialogue as required. The plan assists in identifying concerns and possible disputes. If there are concerns or issues raised, TGI will actively work with the affected stakeholder to clarify and resolve the issues.

As an example, one of the residents contacted through this process has expressed concern about TGI using their land to access the work site. TGI has obtained an entrance agreement with another land owner adjacent to the property, so access through the first landowner's property will not be required.



Other potential issues that could arise include traffic in the area and construction noise. TGI will maintain contact with landowners throughout the construction process and work to mitigate these and any other issues that may arise.

#### 8.2 **Project Stakeholders Other than First Nations**

TGI has identified the following stakeholders, in addition to the First Nations identified in Chapter 9.

- Residents within one kilometre of the drill entry site
- Resident whose driveway is being used for site access
- Teck Cominco
- BC Hydro
- Recreational users of the Ward's Ferry Trail
- Central Kootenay Regional District
- City of Castlegar
- City of Nelson
- Agricultural Land Reserve and Ministry of Environment
- Oil and Gas Commission
- Department of Fisheries and Oceans and Transport Canada

#### 8.3 Summary of Consultative Activities Occurred and Input Received

Appendix O includes a summary of stakeholder contacts made prior to CPCN filing.

TGI believes the public consultation and communication to the time of filing has been appropriate and has satisfied the expectations of landowners and other stakeholders. In particular, phone conversations with landowners have been both useful and instructive.



### 8.4 Future Consultation / Communication Plan

To date, TGI has provided information to the stakeholders of the Project and has responded to issues through different means, including letters, telephone calls, emails, and a newspaper advertisement. If the Project is approved, TGI will continue its communication and consultation program until the Project is completed. TGI's approach with stakeholders will remain inclusive and proactive.

A summary of TGI's communication plan is presented in Table 8-1 below.

| Phase | Activity                                                                                                                                               | Completed By                             |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 1     | Initial pre-construction communication with stakeholders                                                                                               | January 2010                             |
| 2     | Advertisement in local newspaper                                                                                                                       | February 2010                            |
| 3     | Continued stakeholder communication to provide Project updates<br>and confirm awareness of details such as potential traffic and noise<br>disruptions. | One month prior to<br>Project start date |
| 4     | Advertisement in local newspaper. Project updates on TGI website.                                                                                      | Two weeks prior to<br>Project start date |
| 5     | Project completion and thank you newspaper advertisement and communication.                                                                            | Following completion of the Project.     |

#### Table 8-1: Project Communication Plan Summary

Additional detail can be found in the Project Communication Plan in Appendix N. It is TGI's intent that good relationships with property owners and other stakeholders will be maintained through all phases of the project. TGI has every expectation that the public consultation and communication process will help mitigate potential impacts, ensure the Project remains on schedule, and eliminate increased and unexpected project costs.

# 8.5 Conclusion – Sufficiency of the Consultation Process

Given the relatively small size of the Project and the fact that the impacts will be very localized, TGI believes the consultation activities already carried out and the process as outlined in this Application is sufficient to meet the needs of all stakeholders.



# 9 FIRST NATIONS CONSULTATION

TGI, as the project proponent, has engaged potentially affected First Nations in respect of this Project from an early stage in the Project development process. The process before the Oil and Gas Commission that is occurring contemporaneously with this process ensures that the Crown is engaged in consultation, and if necessary accommodation, of First Nations. The Project "footprint" is limited, and does not affect the Kootenay and Slocan Rivers. TGI believes that the level of consultation that has occurred is appropriate in light of the modest potential of the Project to impact any asserted rights and title. Consultation will be ongoing as part of the OGC process, and TGI will remain engaged with identified First Nations.

This section describes:

- The First Nations with asserted claims in the area of the Project;
- OGC Process; and
- Engagement with each of the First Nations with asserted claims in the area of the Project.

#### 9.1 Identification of First Nations with Asserted Claims in Area

TGI has identified three First Nations with asserted claims in the area of the Project:

- a) Ktunaxa Nation Council ("KNC"),
- b) Okanagan Nation Alliance ("ONA"), and
- c) Sinixt Nation Society ("Sinixt Nation").

To identify the First Nations that may be potentially affected by the proposed HDD crossing, TGI has researched the BC Treaty Commission's Web site for Statement of Intent Maps and the maps of asserted traditional territory published by the KNC, the ONA, and the Sinixt Nations on their respective websites.

Background information for these three groups is included in Appendix P.

# 9.2 OGC Process and Consultation with, and if Necessary Accommodation of, First Nations

The OGC is a Crown agent. First Nations consultation is required as part of the OGC's Pipeline Application process. The OGC is responsible for conducting consultation with First Nations.



The OGC follows a prescribed process that includes identification of the affected groups, providing Project documentation, and allowing for a period of response. Any issues or concerns raised by First Nations during that consultation process are dealt with following the OGC's public engagement guidelines. The OGC makes a determination as to when the consultation is complete. A copy of the OGC's First Nations Consultation process as documented in their Pipelines and Facilities Manual is attached as Appendix Q.

Under the OGC process, TGI is responsible for conducting preliminary discussions with the identified First Nations groups, and for providing documentation, such as Project descriptions, maps and drawings, to facilitate the OGC process. TGI's consultation activities described below and in Appendix P will be provided to the OGC for its consideration. TGI also plans to meet with the OGC to ensure an effective continuation of consultation activities as they transition from TGI to the OGC.

#### 9.3 TGI's Interaction with First Nations

TGI has engaged the three First Nations with asserted rights in the area of the Project to explain the Project and to identify the nature of their interests, and to address strategies for the involvement of First Nations in the Project.

The interaction with each of the ONA, KNC and Sinixt Nation is described below. A summary of TGI's communications is included in Appendix P.

#### 9.3.1 KTUNAXA NATION COUNCIL

In connection with another HDD project to replace an aerial crossing of the Columbia River near Castlegar (the "Brilliant Project"), TGI has been working with the Ktunaxa Nation Council since early 2008. On March 17, 2008, by a telephone call and also an email message, TGI requested a meeting with the Ktunaxa Nation Council to review protocols regarding TGI's planned projects in their territory, including the proposed HDD crossing of the Kootenay River.

The Nupqu Development Corporation, previously operated as the Ktunaxa Kinbasket Development Corporation for 12 years, is a natural resource management consulting and contracting company owned by the communities of the Ktunaxa Nation Council. It was formed as a business arm of the Ktunaxa Nation Council to capture wealth, economic, employment, career development and other benefits from natural resource industrial activity within the Ktunaxa Traditional Territory. TGI has worked with the Nupqu Development Corporation previously on the Brilliant project and intends to continue the relationship.

From August 2009 to November 2009, TGI had both face-to-face meetings and email communications with the business manager of Nupqu Development Corporation about potential



business opportunities relating to the projects and about the Nupqu Development Corporation's interest in contracting for the Brilliant project and this Project.

In January 2010, the KNC was advised, via an email, of an application for the Project that would be filed with the Commission, and of the expected construction commencement date. The email also reported that Nupqu Development Corporation was registered in the Company's procurement process.

On January 25, 2010, at the Ktunaxa Nation Council's request, a preliminary environmental screening report was provided to the KNC. On February 10, 2010, the KNC was advised that a more detailed field reconnaissance on the Project was being conducted. A report would be available later.

TGI sent a more detailed letter via registered mail to the Ktunaxa Nation Council regarding the Project on February 19, 2010. The letter describes the nature of the Project, the need for the Project, the proposed alignment, and additional land potentially needed. The letter also provides information on the permit process and anticipated construction starting date. TGI expressed its interest to continue relationships that have developed with the Ktunaxa Nation Council during the Brilliant project.

The Ktunaxa Nation Council has expressed an interest in business and contracting opportunities arising from the Project. Ktunaxa Nation's Nupqu Development Corporation ("Nupqu") is already registered in the TGI procurement process. The Company intends to continue the relationship it developed with Nupqu in the Brilliant project and intends to engage Nupqu where possible in this Project.

The KNC has requested a copy of the Project's field reconnaissance report. TGI will provide the KNC with a copy once the report is available.

#### 9.3.2 OKANAGAN NATION ALLIANCE

TGI informed the Okanagan Nation Alliance of the Project first through a phone call and email message and then by a formal introductory letter via registered mail on February 19, 2010. The letter describes the nature of the Project, the need for the Project, the proposed alignment, and the additional land potentially required. The letter also provides information on the permit process and anticipated construction starting date.

In March and April of 2010, TGI had both telephone discussions and face-to-face meetings with the representative of the Okanagan Nation Alliance regarding the Project. For example, on April 12, 2010, the Aboriginal Relations Manager of TGI met with Mr. Jay Johnson, who was the Senior Technical Advisor of the ONA. At the meeting, TGI committed to re-sending information that was provided on February 19, 2010, and to providing a status report on studies to be done.



Mr. Johnson informed that the ONA has developed a new decision making process, and would not recognize external archaeological studies in its territory unless the ONA is involved in the field work. The ONA has advised that it had shared archaeologists in the past with the Ktunaxa Nation. The ONA would provide an initial funding proposal in order to proceed with consultation.

On April 19, 2010, TGI telephoned and emailed Mr. Johnson of the ONA, informing him about the upcoming project meeting and following up on the proposed initial funding agreement. On the same day, TGI provided the ONA via email a copy of the February 19, 2010 letter (Okanagan Nation Alliance letter 2010-02-19) and a preliminary archaeological field assessment (Shoreacres Archaeological Report July 2009).

On May 12, 2010, TGI and Mr. Johnson of the Okanagan Nation Alliance had a telephone conversation about the ONA's proposed budget for engagement on the Project. Mr. Johnson also stated that the proposed Project was not close to any ONA members' reserve. Following the telephone conversation, the ONA provided, via an email, a document outlining its position with regard to the archaeological work conducted within the Okanagan Nation Territory. The document states that the ONA would not recognize archaeological work conducted within its territory without the participation of the Okanagan Nation and may need to conduct its own preliminary field reconnaissance. The Okanagan Nation Alliance has a policy of not recognizing archaeological work within its territory absent the Okanagan Nation's participation in the work.

When the archaeological fieldwork is in progress within the Okanagan Nation territory, TGI will ensure that the personnel from the Okanagan Nation Alliance are involved. In addition, TGI has used an archaeological firm owned by Ktunaxa individuals and approved by the Ktunaxa Nation Council for both the Brilliant project and this Project. The Okanagan Nation Alliance is familiar with this archaeological firm, and has shared archaeologist in the past with the Ktunaxa Nation.

#### 9.3.3 SINIXT NATION SOCIETY

Following a telephone conversion, TGI sent a formal introductory letter via registered mail to the Sinixt Nation Society on April 26, 2010, providing information about the proposed Kootenay River Crossing Upgrade Project. The letter describes the nature of the Project, the rationale for the Project, the proposed alignment, additional land potentially required, and other permits and approvals required. The letter also provides TGI's contact information during the planning and permitting stages of the Project. Subsequently, TGI followed up on the April 26, 2010 letter with another telephone call, confirming contact information.

On June 1, 2010, the Sinixt Nation, through an email, asked several questions about the Project. In particular, the Sinixt Nation asked about the proposed pipeline alignment, the temporary work sites, and opportunities for workers from the Sinixt Nation to participate in the



construction of the pipeline. The Sinixt Nation also asked about TGI's plans for an archaeological overview assessment and expressed an interest to include its personnel in the assessment.

On June 8, 2010, through an email, TGI responded to the Sinixt Nation's inquiries. In particular, TGI advised that based on a study comparing different potential HDD pipeline alignments, the present alignment was chosen in order to provide the maximum protection against drilling fluid fracture to the surface from the HDD drilling process. TGI also informed the Sinixt Nation that the finalized study would be an appendix in the Certificate of Public Convenience and Necessity application before the Commission, and would be available when the application is filed. In addition, TGI welcomed potential workers from the Sinixt Nation to participate in the construction work when such opportunities arise, and provided the personnel from the Sinixt Nation with contact information. With regard to the Sinixt Nation's interest in participating in the archaeological contractor and that it would advise Eagle Vision and the other identified First Nations who have expressed an interest in participating in the archaeological overview assessment fieldwork of the Sinixt's interest.

TGI does not anticipate any problems with regard to the Sinixt Nation's interest in participating in the archaeological overview assessment fieldwork. If this becomes an issue, TGI will work with Eagle Vision and the other First Nations participating in the process to seek a resolution.

# 9.4 Further Consultation Plan

It is TGI's regular practice that communications with the First Nations continues as a project progresses. TGI answers any questions that may be raised by the First Nations on an on-going basis, and all concerns and issues identified will be dealt with in a timely manner. TGI will continue this practice in this Project. TGI plans to have on-going discussions with the three identified First Nations, to inform them of key project dates, and to address any concerns or questions they may raise during the duration of the construction of the Project. TGI has developed positive working relationships with the Ktunaxa Nation Council and the Okanagan Nation Alliance through past projects, and intends to continue these relationships.

TGI will be working with the ONA and the Sinixt Nation regarding the archaeological work being planned and their participation in the archaeological overview assessment fieldwork. In addition, on-going archaeological monitoring will be required as identified in Section 7.3.

A copy of this Application, together with information on how the First Nations can participate in the CPCN process for this Project, is being provided to the identified First Nations at the same time as the Application is being filed.



# 9.5 Conclusion on First Nations Consultation

The physical impacts of the Project are limited. The HDD crossing does not affect the Kootenay and Slocan rivers. The entry point of the HDD alignment will be on private land. A narrow strip of Crown land, about 475 m long and 18 m wide, for the new ROW will be acquired, but the pipeline will be below ground and the surface will be restored. TGI believes that there is very limited potential to affect aboriginal rights and title in the area of the Project. The level of consultation undertaken by the OGC with the assistance of TGI at this stage of the Project has been appropriate. It is TGI's intention and regular practice to continue liaising with First Nations as the Project progresses, and TGI expects the relationships with the First Nations to continue to be positive as the Project moves forward.



# **10 CONCLUSION**

The Project is the best solution to the concerns identified by TGI regarding the fitness for service of the existing Shoreacres aerial crossing. Among the options considered, the Project is the lowest cost option, and best achieves the non-financial factors considered. The Project is in the public interest and necessity and should proceed at this time.

# Appendix A TGI STANDARD OPM 08-02 INSPECTION OF BRIDGE AND AERIAL CROSSINGS

| <b>OPM 08-02</b><br>23 October 2008 | SPECIFICATION OPERATIONS AND MAINTENANCE Crossing Inspection                                                                                                                                                                                                                                                                                                            |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                     | Inspecting Bridge and Aerial Gas                                                                                                                                                                                                                                                                                                                                        |  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                     | Replaces: OPM 08-02 dated 10 August 2004                                                                                                                                                                                                                                                                                                                                |  |
| Overview                            |                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                     | This standard specifies the requirements and responsibilities for the inspection of gas lines located on bridges and aerial crossing structures.                                                                                                                                                                                                                        |  |
| Audience                            |                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                     | This document is intended for Distribution and Transmission<br>Operations personnel involved with operations.                                                                                                                                                                                                                                                           |  |
| References                          |                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                     | DES 08-01 Corrosion Control                                                                                                                                                                                                                                                                                                                                             |  |
|                                     | • OPM 04-01 Inspecting and Maintaining BGSSs and System Valves                                                                                                                                                                                                                                                                                                          |  |
|                                     | • Form 1572 Bridge/Underwater/Aerial Crossing Inspection Report                                                                                                                                                                                                                                                                                                         |  |
|                                     | • Form 2300 Survey Leak and Hazardous Condition Report                                                                                                                                                                                                                                                                                                                  |  |
|                                     | • Transport Canada Manual Standard Obstruction Markings                                                                                                                                                                                                                                                                                                                 |  |
|                                     | • CSA Z662-07 including Sections 12.10.2.1, 10.6.4.3                                                                                                                                                                                                                                                                                                                    |  |
|                                     | • ASME B31.8 Gas Transmission and Distribution Piping Systems (latest version)                                                                                                                                                                                                                                                                                          |  |
| General                             |                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                     | Individuals who perform inspections shall be qualified by training<br>and/or experience to implement the applicable requirements and<br>recommendations of all bridge and aerial crossings according to this<br>standard.                                                                                                                                               |  |
|                                     | Pipeline and Distribution Operations and Project Managers must report<br>all new or abandoned bridge/aerial crossings under their respective<br>responsibility to the Operations Process Support (OPS) Closing and<br>Admin at the Surrey Operations Centre. This information will be<br>obtained by the integrity department for updating the master crossing<br>list. |  |
|                                     | As required, aerial pipeline crossing identification, in the form of a distinctive painting scheme, must be maintained so that the crossing is                                                                                                                                                                                                                          |  |


clearly visible and the painting scheme complies with the **Transport** Canada Manual Standard Obstruction Markings. **Definitions** Category 1 All IP and TP bridge and aerial crossings are category 1. Category 2 All DP bridge and aerial crossings with an outside diameter (OD) greater than or equal to 273 mm are category 2. Category 3 All DP bridge and aerial crossings with an OD of 60 mm up to and including 219 mm are category 3. Category 4 All DP bridge and aerial crossings with an OD less than 60 mm are category 4. Category D Category D crossings are selected crossings requiring periodic detailed inspections.

### Responsibilities

The responsibilities pertaining to inspection of transmission and distribution bridge and aerial crossings include:

**Transmission and Distribution Operations** must ensure that the following processes are in place for the crossings that they are responsible for:

- categorizing crossings and maintaining and updating the master crossing list
- budgeting for routine inspections and for required corrective work
- ensuring the timely completion of routine inspections and required corrective work in accordance with this standard



- setting priorities and establishing schedules for the inspections and recommended remedial work
  - Scheduling of remedial actions should be based on the results of a risk assessment. Risk assessments should consider the probability of a harmful effect to: public safety, the environment, financial consequences to the company, and security of gas supply to customers. Previous reports should be reviewed for comparison prior to determination of the aerial crossing repair, upgrades, or abandonment.
- maintaining records of inspection, maintenance performed, and inspection frequency risk assessments

# **The General Manager, Transmission Operations** is responsible for all:

- TP main line bridge and aerial crossings
- TP lateral bridge and aerial crossings off the mainline, the Vancouver Island transmission systems, and the Princeton lateral

# The **Distribution Operations and Maintenance Manager** is responsible for all:

- TP lateral bridge and aerial crossings off the Spectra and Trans Canada Pipelines, except the Princeton lateral
- TP bridge and aerial crossings downstream of a high pressure transmission system regulating station, except on the mainline
- IP and DP bridge and aerial crossings

When requested, **Engineering Services** will provide or coordinate the following:

- assistance in conducting inspections or surveys
- terms of reference for any consultants retained to do inspections or surveys
- specifications and services for any remedial action
- copies of all inspection reports in which they participate



Engineering must maintain all inspection reports in which they participate.

#### **Inspection Frequencies**

Bridge and Aerial crossings will be inspected in accordance with the frequencies outlined in Tables 1 and 2. With the exception of Category 1 crossings, a different inspection frequency is acceptable if justified by a risk assessment.

| Category       | Crossing Criteria                                                                                        | Frequency of<br>Inspection                                                                             |
|----------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1 <sup>a</sup> | All TP and IP crossings                                                                                  | Once every 6 months for<br>Class 1, 2, or 3 locations.<br>Once every 3 months in<br>Class 4 locations. |
| 2              | All DP crossings with an OD greater than or equal to 273 mm                                              | once a year                                                                                            |
| 3              | All DP crossings with an OD of 60 mm up to and including 219 mm                                          | once every 2 years                                                                                     |
| 4              | All DP crossing with an OD less than 60 mm                                                               | periodic <sup>b</sup>                                                                                  |
| 1, 2, 3        | All TP, IP, and DP crossings that have experienced unusual physical traumas such as floods, earthquakes, | Special (non-scheduled) <sup>c</sup>                                                                   |

#### **Table 1: Visual Bridge and Aerial Inspections**

#### Definition

fires, or collisions

A visual inspection involves checking the crossing from the shoreline with binoculars and does not imply a detailed, close-up examination. CSA Z662-07, Section 12.10.2.1:

Distribution lines that are installed in locations or on structures where abnormal physical movements or abnormal external loadings can cause failure or leakage must be patrolled periodically, with the patrol frequencies determined by the severity of the conditions and the associated safety risks.

**NOTE:** Abnormal physical movements and abnormal external loadings include long lengths of pipe installed above ground on bridges with expansion joints, land movements, river crossings, and shallow pipe in major collector roads.



<sup>a</sup> As per CSA Z662-07 Section 10.6.4.3 and ASME B31.8 Section 851.2.

<sup>b</sup> The asset manager will establish an inspection frequency that is appropriate for the risk associated with the specific crossing.
<sup>c</sup> Special inspections may range from a very brief visual examination to a detailed in-depth evaluation depending upon the nature of the trauma. Consult with respective Distribution and Transmission Operations departments.

#### Table 2: Detailed Visual Bridge and Aerial Inspections

| Category | Crossing Criteria      | Frequency of Inspection |
|----------|------------------------|-------------------------|
| D        | All selected crossings | every 5 years           |

The crossings requiring detailed inspections will be determined by the Transmission/Distribution Asset Management in consultation with Engineering.

### **Inspection Requirements**

#### Inspections

Prior to inspecting the crossing, previous reports should be reviewed to ensure familiarity with the design features and operating history of the crossing.

Carry out the inspection as per Form 1572 Bridge/Underwater/Aerial Crossing Inspection Report.

**NOTE:** Corrosion Control is responsible for checking that bridge and aerial piping is electrically insulated from underground piping and from the bridge in accordance with **DES 08-01** *Corrosion Control*. Not all aerial pipes are electrically insulated. Some are only a few metres long.

**NOTE:** Transmission or Distribution Operations are responsible for valve inspection and maintenance in accordance with **OPM 04-01** *Inspecting and Maintaining BGSSs and System Valves.* 



#### Scheduling Considerations

Inspections should be carried out preferably during weather extremes to view pipe and structure response during most stressful conditions (summer and winter) if weather and safety permit.

#### **Inspection Reporting**

Use **Form 1572** *Bridge/Underwater/Aerial Crossing Inspection Report* to record all routine visual bridge or aerial crossing inspections except category D inspections.

• For each unsatisfactory condition reported on Form 1572, complete Form 2300 Survey Leak and Hazardous Condition Report.

For the crossings within the responsibility of the General Manger, Transmission Operations, the inspection reports are filed and closed in the Transmission Computerized Maintenance Management System (CMMS).

For the crossings within the responsibility of the Distribution Operations and Maintenance Manger, forward completed **Forms 1572** and **2300** with the original job package to OPS Closing and Admin at the Surrey Operations Center.

Requests for emergent or urgent repair work should be made verbally to:

- for DP and IP bridge or aerial crossings call Dispatch
- for TP bridge or aerial crossings notify the area manager of transmission or the Distribution Operations & Maintenance Manager depending on asset ownership
- document all emergent or urgent repair requests on Form 2300

When a problem is found on a crossing that is not of immediate concern but may compromise the long term integrity of the crossing, regardless of the category or location, complete **Form 2300** with details and digital pictures, if practical, of the problem. Examples of such problems are:

• pipe lifting off supports



- any support or roller missing or loose
- misaligned elbow
- extraordinary erosion exposing pipe riser through the bank
- pipe improperly supported
- cables stretched significantly beyond set marks
- excessive vibration in the pipe caused by bridge traffic or wind spring hanger setting outside of hanger limits or against stops
- excessive corrosion or pitting

#### **Baseline Comparison**

The asset manager or representative should compare new inspections to previous inspections to determine any significant changes by the asset manager or asset manager's representative.

#### **Category D Inspections**

For Category D inspections, in addition to the requirements outlined above, a written report, specific to a particular crossing, must be prepared and stamped by a qualified professional engineer. This report is recommended to contain the following information; however, the final content is to be determined by a qualified engineer:

Site Inspection and Survey

- Layout drawing indicating the pipe supports and other important features.
- Visual inspection of the coating condition on all components, noting deficiencies including rusting, blistering, chalking, corrosion, dents, gouges, or coating delamination. Dry film thickness measurements of the coating at specific locations, as required.
- Visual inspection of the pipe, including rollers, support brackets, Ubolts, expansion connections, and attachments to the concrete piers, checking alignment, and searching for evidence of distress caused by malfunctioning joints, missing or failed fasteners, ceased rollers, vibration, or vandalism.
- Visual inspection of all steelwork, with particular reference to corrosion and possible loss of wall. Measurements of thickness can be made with calipers when appropriate. Visual examination of weldments for evidence of cracking caused by vibration and fatigue.



- Examination of main cables, backstays, wind cables, horizontal, vertical, and diagonal suspenders, and safety cables, with particular attention to any slack cables, or areas of corrosion, birdcaging, kinks, or wire damage.
- Visual examination of saddles, clamps, sockets, pins, clevises, turnbuckles, clips, tension springs, and connections for possible missing fasteners, or signs of distressed or damaged members, buckled turnbuckles, or excessive wear. Spot checking of bolt torques in clamps, where appropriate.
- Examination for any evidence of gas leaks at pipe connections.
- Inspection of foundations and anchorages, paying particular attention to any evidence of movement of foundations caused by settlement, or slumping of the river banks. Also to be noted is the condition of the anchorage as it enters the concrete foundation, ensuring that there is not a corrosion pocket at the interface.
- Examination of the compound noting damage and/or hazards.

Structural Modeling and Analysis

• Structural modeling and analysis, as deemed necessary by a professional engineer.

Assessment and Report

- The condition of the pipe, structural members, cables, connections and foundations, noting deficiencies with any items mentioned under the inspection.
- Recommended maintenance to ensure contiued safe operation. Analysis and indication of adequacy of the various structural components.
- Recommended remedial action, as required.
- Photographs, analysis results, data, and drawings noting deficiency locations.
- Evaluation of the seismic design of the aerial or bridge structure.

Where Terasen gas lines are attached to structures owned by another party (e.g., MOTH), the owner of the structure must be advised prior to



the inspection. The inspector is responsible for arranging all required permits before carrying out the work.

The inspector must complete the minor cleaning of the pipe to permit a detailed visual inspection (e.g., removing bird droppings). This activity must be completed in accordance with environmental and other regulatory requirements.

Dents, gouges, and corrosion must be evaluated and reported including the depth and size of the damage, if practical.

Coating damage including cracking and disbondment must be evaluated and the degree to which the pipe is exposed and damaged must be reported, if practical.

Transmission or Distribution Operations may need to commission a more detailed evaluation of crossing deficiencies identified in a Category D inspection in order to complete a risk analysis and establish a scope of work for repairs.

## Records

Maintain records of:

- crossing inspection reports (Form 1572 Bridge/Underwater/Aerial Crossing Inspection Report) for at least 6 years
- maintenance and repair work for as long as the facility remains in existence except for minor wrapping repair or touch up
- inspection frequency risk assessments for as long as the facility remains in existence

Engineering must maintain the following reports for as long as the facility remains in existence:

- all Category D inspection reports where they have participated
- follow up remedial action reports sent in from Transmission or Distribution Operations

# Appendix B ASSESSMENT OF EAST BANK SLOPE STABILITY AT THE TERASEN GAS SHOREACRES AERIAL CROSSING



# Assessment of East Bank Slope Stability at the Terasen Gas Shoreacres Aerial Crossing

Prepared by: Janet Green, P.Eng. Terasen Gas, System Integrity Revision Date: July 2009

Reviewed by: Dr. Alex Baumgard, P.Eng., P.Geo. BGC Engineering Inc.



#### Table of Contents

| 1. | Intro                                      | lction1                                   |  |  |
|----|--------------------------------------------|-------------------------------------------|--|--|
| 2. | Review of Past Slope Stability Assessments |                                           |  |  |
|    | 2.1                                        | .1 Thurber Consultants Ltd., January 1990 |  |  |
|    |                                            | 2.1.1 Scope of Work                       |  |  |
|    |                                            | 2.1.2 Findings                            |  |  |
|    |                                            | 2.1.3 Recommendations                     |  |  |
|    | 2.2                                        | Golder Associates Ltd., May 19953         |  |  |
|    |                                            | 2.2.1 Scope of Work                       |  |  |
|    |                                            | 2.2.2 Findings                            |  |  |
|    |                                            | 2.2.3 Recommendations                     |  |  |
| 3. | 2009                                       | lope Stability Assessment                 |  |  |
|    | 3.1                                        | Methodology4                              |  |  |
|    | 3.2                                        | Results4                                  |  |  |
| 4. | Reco                                       | mendations5                               |  |  |
| 5. | Closing6                                   |                                           |  |  |
| 6. | References                                 |                                           |  |  |



#### 1. Introduction

Terasen Gas' aerial crossing at Shoreacres has been in place since 1957. It forms part of the Castlegar-Nelson 6" transmission line. The crossing is located at the convergence of the Slocan and Kootenay Rivers North of Castlegar. The aerial span crosses the Kootenay River between Shoreacres and Glade. On the Shoreacres (West bank) side the crossing has one tower that is built on a flat area near the river (Photo 1). On the Glade (East bank) side the pipeline comes ashore on a steeply graded slope (Photo 2). There is no tower on this side, but a support anchor is positioned in line with and upslope of the crossing (Photo 3). As the pipeline comes ashore on the East bank it has a number of sharp bends before proceeding underground along Terasen's right of way. The City of Nelson and its surrounding area are downstream customers of this crossing. Terasen Gas is currently looking at options of replacement or refurbishment of the existing crossing.

The East slope of the aerial crossing and portions of the adjacent right of way have shown signs of instability over the life of the pipeline. Field observations indicate that this slope instability extends approximately 300 m north of the aerial crossing along the right of way. This risk is currently managed through Terasen's Natural Hazard Risk Management Program whereby inspections are conducted by qualified personnel at a frequency consistent with the risk. In addition, in 1990 a small retaining structure was installed inside the fenced compound to lessen the direct impacts of the shallow soil sloughing on the exposed pipe.

The purpose of this report is to evaluate the feasibility of replacing or refurbishing the aerial crossing at its current location as it pertains to the stability of the slope and the risk that it poses to the integrity and reliability of Terasen's system serving Nelson.

The sections of this report include a review of historic reports that address the slope stability of the East bank, and a more current slope stability assessment that uses industry standard methods to determine the factor of safety against failure of the slope.

#### 2. Review of Past Slope Stability Assessments

Two previous slope stability assessments were conducted of the East bank slope of the Kootenay River at Terasen Gas' Shoreacres aerial crossing. The first study (Thurber) was initiated after Terasen field personnel noted signs of shallow slope instability affecting the above ground portion of the pipeline. The second study (Golder) was initiated by CWMM Consulting Engineers to address the effects of the slope instability on the overall structural integrity of the aerial crossing.



#### 2.1 Thurber Consultants Ltd., January 1990

#### 2.1.1 Scope of Work

Thurber conducted two site inspections. The first was a preliminary inspection on July 20, 1989. The second was a more detailed inspection on October 11, 1989 that included a rough survey using a hip chain and clinometer and the excavation of several test pits. Laboratory identification tests were completed on representative samples taken from the test pits. The information collected in the field was used in conjunction with historical records provided by Terasen and other published geological information and photographs to evaluate the shallow soil creeping and the general slope stability.

#### 2.1.2 Findings

The Kootenay River valley is composed of glaciofluvial silts, sands and gravels overlying rock and basal till. Prior to hydroelectric developments, the Kootenay River eroded a valley through these deposits, leaving the slopes at their natural angle of repose. As a result, it is considered that the east slope of the crossing had only marginal stability at the time of pipeline construction. The upper slopes, extending to 30 m above the river level have a slope of approximately 18°. The lower slopes vary from 38° inside the fenced compound to a maximum of 60° on the silt bluff overlooking the river.

The contours shown on Dwg. 60091-ML51-RX4 dated February 13, 1957 show that there was a natural alcove at this location prior to pipeline construction. The alcove could have been the result of groundwater seepage or slope erosion. The alcove appears to have been filled in to bury the anchors for the pipeline crossing, giving the slope a more uniform profile.

The steep fill slope within the fenced compound had suffered surface soil creep with the result that three zones aligned across the fill face were visible. Each creep zone consisted of an upper scarp and lower bulge or toe roll. One such toe roll had moved up against the exposed length of pipe approximately 8 m long that is found within the fenced compound.

#### 2.1.3 Recommendations

There is ongoing creep movement of the surficial soils within the fenced compound. There is no indication that the creep movements will stop, and they might accelerate. Provided the internal drainage of the slope is maintained, the movement should be confined to shallow depth.

Thurber recommended removing the soil that was pressing against the above ground pipe and installing a slope retention structure. This was carried out, and the retention structure is still in place at this time (Photo 4).

The general slope stability analysis for deep seated sliding showed that under fully drained conditions the long term slope stability had a marginally acceptable factor of



safety (1.49). Under seismic loading or with an increase in groundwater the factor of safety dropped below acceptable levels (1.08-1.38). Thurber recommended a review of Terasen's slope stability requirements at this location.

#### 2.2 Golder Associates Ltd., May 1995

#### 2.2.1 Scope of Work

Golder Associates conducted preliminary geotechnical assessments of Terasen's Shoreacres crossing of the Kootenay River, and the Castlegar crossing of the Columbia River. This summary will only address the findings of the Kootenay River crossing.

Golder conducted a ground reconnaissance of the slope to observe site conditions and to collect slope profiles using a hip chain and clinometer. Previous drawings, reports, and aerial photographs were also reviewed. The information collected was used to complete a slope stability analysis.

#### 2.2.2 Findings

The east bank slope varies between 30° and 40°. Observations indicated no apparent evidence of major slope instability and/or groundwater seepage. However, the steep sections of the slopes were noted to be experiencing minor surface creep movements.

The inferred slope soil conditions indicate that the lower portion of the slope is underlain by compact deposits of sand and gravel. The upper slope area is comprised of loose to compact sand. It is anticipated that these granular deposits overlie bedrock. The groundwater table is expected to be controlled by the water level in the Kootenay River. Any ground water flows within the slope would likely follow the bedrock surface.

Three failure surfaces were analyzed for stability. In general, for a slope to be considered stable under static and earthquake conditions, the factors of safety should be a minimum of 1.5 and 1.1 respectively. The calculated factor of safety for the deep seated failure surface under static and earthquake loads were close to or exceeded the minimum requirements (1.5 static, 1.1 seismic). However for shallow failures, the factors of safety were generally less than the desired values (1.1-1.2 static, 1.0-1.1 seismic).

#### 2.2.3 Recommendations

Based on the preliminary assessment and barring adverse groundwater conditions and/or possible scouring at the toe of the slope during high river levels, it was Golder's opinion that the general slope area was marginally safe from shallow failures.

In order to increase the factors of safety to the suggested minimum values, it would be required that the slopes be flattened and/or construction of a toe berm. When



considering the location and steep slopes, these works would be very difficult and expensive.

It was suggested that consideration be given to establishing a monitoring program for this site that consists of permanent survey monuments on the tower and wind cable anchors, as well as several located on the slope.

#### 3. 2009 Slope Stability Assessment

#### 3.1 Methodology

The information collected in the Thurber and Golder reports was supplemented with as-built drawings, site observations, and surveyed topography. This information was used to develop a slope stability model using Slope/W 2007 software to conduct a slope stability analysis.

The soil properties used by Golder Associates in their analysis were used again in this most recent analysis. The only change to the soil properties was that the friction angle of the upper sand layer was changed from 35° to 32° to reflect the findings of additional laboratory testing that was conducted on samples from a nearby borehole. The small changes in the soil properties did not have a significant impact on the results.

A topographical survey was carried out by HinterLand Surveying & Geomatics Inc. of Trail, BC in November 2008. This topography and profile is a more accurate representation of the East bank slope than what was used in the Thurber or Golder reports.

The as-built drawings for the crossing were used to locate the anchors on the model and to apply their tensile load to the forces acting on the slope. The location of the anchors was also used to determine what impact any slope movement would likely have on the structure and pipeline.

The slope stability model was created by Janet Green, P.Eng. of Terasen Gas and was reviewed by Dr. Alex Baumgard, P.Eng., P.Geo. and (Kumar) Somosanduram Sriskandakumar, P.Eng. of BGC Engineering Inc.

#### 3.2 Results

The static short term and static long term stability models and results can be seen in Figures 1 and 2, respectively. Since the slope rests at the natural angle of repose of the soil, the surface of the slope is considered to have a factor of safety of 1.0, which is supported by the observations of shallow soil sloughing that have been noted within the fenced compound. In this scenario, the lowest factor of safety is always at the slope surface and increases as the sliding plane gets deeper.

The static short term stability applies to temporary slope conditions. For a slope to be considered stable under short term conditions, the factor of safety should be a minimum of 1.3.



Figure 1 shows that a slip surface with a factor of safety of 1.3 will impact the wind anchors, possibly causing the anchor blocks to move and the cable to lose tension. The main anchor would have reduced burial depth, but would likely not be undermined. More shallow sliding planes will have a lower factor of safety, and although they may not impact the anchor directly, they would reduce the soil cover over the anchors.

The static long term stability is relevant to the life of any asset placed in or on the slope in question. For a slope to be considered stable under long term conditions, the factor of safety should be a minimum of 1.5. Figure 2 shows that a slip surface with a factor of safety of 1.5 will undermine both the wind anchors and the main stay anchor which are found inside the sliding block. This could cause the aerial span to lose all support on the East bank.

#### 4. Recommendations

In its current state the East bank slope at Terasen's Shoreacres crossing can only be considered marginally stable. It is expected that this slope will continue to experience surface sloughing. If any aggravating factors were introduced, such as increased pore water pressure or seismic load, these conditions would worsen.

Increasing the stability of this slope would require decreasing the slope angle, or constructing a toe buttress. Decreasing the slope would require extensive earthworks, and is not feasible while the aerial crossing is in place. A toe buttress would be both difficult and costly to construct as the slope extends into the Kootenay River. Both of these options would also have detrimental environmental impacts to the Kootenay River.

In consideration of these factors, it is recommended that Terasen make every attempt to avoid this area of slope instability when considering their replacement or refurbishment options at this location. For the short term, it is recommended that Terasen continue to monitor this site for signs of increased slope instability through repeat ground inspections. It is also recommended that Terasen assess the possible effects of reduced soil cover or undermining of the anchors to the overall integrity of the aerial span.



#### 5. Closing

This report was intended for the use of Terasen Gas Inc. in the feasibility study for the replacement or refurbishment of the existing Shoreacres aerial crossing.

I hope that this meets with your needs at this time, please don't hesitate to contact the undersigned if you have any questions or concerns.

Written By:





Janet Daly, P.Eng. Integrity Engineer - Geotechnical Terasen Gas Inc.

**Reviewed By:** 



J. BAUMGARD Dr. A #29438

Dr. Alex Baumgard, P.Eng, P.Geo. Senior Geotechnical / Environmental Engineer BGC Engineering Inc.

Assessment of East Bank Slope Stability at the Terasen Gas Shoreacres Aerial Crossing





Photo 1: On East bank looking across the Kootenay River at the West bank of the Shoreacres Aerial Crossing





Photo 2: Looking downstream along East bank slope of Shoreacres Aerial crossing

Assessment of East Bank Slope Stability at the Terasen Gas Shoreacres Aerial Crossing





Photo 3: On West bank looking at East bank of Shoreacreas Aerial Crossing





Photo 4: Slope retention structure recommended by Thurber Consultants Inc. in 1990.







#### 6. References

Imada, G., & Carlsen, B. (1995). Preliminary Slope Assessment B.C. Gas Crossings Castlegar and Shoreacres British Columbia. Golder Associates Ltd.

Payne, M.I., & Buck, G.F. (1990). Slope Assessment and Pipeline Protection Recommendations Kootenay River Crossing – East Slope Savona to Nelson Mainline. Thurber Consultants Ltd.

Appendix C INSPECTION AND ASSESSMENT OF KOOTENAY RIVER AERIAL CROSSING (SHOREACRES) JUNE 24, 2010



### TERASEN GAS INC.

#### INSPECTION AND ASSESSMENT OF KOOTENAY RIVER AERIAL CROSSING, SHOREACRES, BC

Prepared for:

Terasen Gas Inc. Design Engineering - Pipelines 16705 Fraser Highway Surrey, B.C. V4N 0E8

Prepared by:

CWMM Consulting Engineers Ltd. 200-1854 Kirschner Road Kelowna, B.C., V1Y 4N6 Tel: 250-868-2308 Fax: 250-868-2374 Contact: Donald D. Bergman, P.Eng. Email: dbergman@cwmm.ca

#### 1.0 Introduction & Scope

CWMM Consulting Engineers Ltd. has been retained by Terasen Gas Inc. to carry out an inspection and condition assessment of the existing Kootenay River Aerial Crossing at Shoreacres. The crossing is located approximately 20km north east of Castlegar along Highway 3A. The purpose of the assessment is to determine the general condition of the structure and to provide an opinion as to the life expectancy of the crossing in its current state with no remedial work, and following a refurbishment which would remediate the most significant deterioration. This report follows two previous condition assessment reports prepared by CWMM in 1993 and 2003.

#### 2.0 Site Description and Inspection

The Kootenay River Crossing at Shoreacres was originally built in 1957 and consists of a single pipe carried by a large cable suspended structure.

The main cable spans approximately 236 metres, supported by a tower on the west end, and an anchorage at the embankment on the east end. Vertical suspender cables hang from the main cable and carry the pipe on steel saddles with roller supports. There is also a pair of horizontal wind cables, connected to the pipe saddles by secondary wind guy cables.

An inspection of the crossing was carried out on June 11 and June 22, 2009 by Jonathon Smith, a Senior Technologist of our Creston branch office. The inspection involved climbing the fixed ladder on main tower and walking along the pipe itself from the main tower at the west bank to the anchorage at the east embankment.

A safety harness and lanyard were used as fall protection and an assistant remained on-site during the inspection as a safety precaution.

#### 3.0 Condition Assessment

#### 3.1 Pipe

At the west end, the pipe riser projects up out of the ground, and turns 90° before passing through the tower and crossing the river. At the east end, the pipe turns up the slope, then makes a transverse bend, extending further up the slope. The pipe enters the ground at a slight uphill angle.

The pipe is painted in alternating segments of orange and white. The white paint is generally in poor condition throughout the length of the pipe. Extensive flaking and peeling of the coating was observed with considerable surface rust throughout. The orange paint is generally in better condition with minor cracking and peeling in some areas. At the time of inspection, there is an osprey nest located on the pipe near the mid-span at H5 north.





Fig. 1 - View looking east from tower.

Fig. 2 - Poor condition of white paint.

The ground entry points at both ends are in good condition. At both ends the pipe is wrapped with white tape at the ground entry point. Some cracking and blistering of the tape was noted, however there was no evidence of corrosion. At the east end the pipe is also wrapped with black tape to the transverse bend. Some bulges and peeling of the tape was noted in this area with subsequent corrosion noted.

As sighted from each end, the profile of the pipe is relatively smooth, and the alignment is essentially straight in plan, as viewed from the tower.



Fig. 3 - East ground entry point.





CWMM CONSULTING ENGINEERS LTD.

The following photos show the deterioration of the white paint on the pipe and the subsequent rust compared to the 2003 inspection photos.





Fig. 5 - H8 east, 2003 inspection. Note dirty condition of pipe but no rust showing.

Fig. 6 - H8 east, 2009 inspection. Large rust spots showing.



Fig. 7 - H6-H7 west, 2003 inspection.

Fig. 8 - H6-H7 west, 2009 inspection.

CWMM CONSULTING ENGINEERS LTD.

#### 3.2 Tower

The tower is made up of steel angles with welded and bolted connections. Similar to the pipe the tower is painted in alternating segments of orange and white. The paint on the steelwork is peeling and blistering in various locations throughout the tower, with subsequent rust showing. The white paint is generally in poor condition with fine cracks and peeling throughout the tower. In most areas the top coat is peeling away from the primer. In other areas the coating had been removed with large rust spots showing. At this time the rust is generally surface rust with no major pitting or loss of sectional area noted.

The steelwork is also covered with mildew and lichen. The osprey nest noted in earlier reports has been relocated from the top of the tower.



Fig. 9 - Peeling of paint and subsequent rust.



Fig. 10 - General cracking and peeling of white paint on tower.



Fig. 11- Lichen and mildew on tower.

#### 3.3 Wind Masts

The wind cables pass over steel saddles atop concrete masts at the west end, before continuing down to their anchorages. The masts and saddles are in good condition, with no apparent deficiencies.



Fig. 12 - South-west wind mast.

#### 3.4 Cables

The primary cables including the main suspension cable, backstay, tower guys, and wind cables are bridge strand, whereas the remainder are wire rope. The cables, sockets, and their attachments are coated with a zinc rich paint (Zicote). The cables for the most part are in good condition with only minor amounts of surface rust showing in a few isolated locations. This is in contrast with the nearby Castlegar crossing were many of the cables had considerable amounts of surface rust.



In the 1990's the various cables were tested for tension relative to their original design tension and adjusted required. were as Various vertical hangers supporting the pipe were adjusted as well as the tower guy cables. The main suspension cable and deemed wind cables were satisfactory and were not adjusted.

CWMM CONSULTING ENGINEERS LTD.

Fig. 13 - Typical vertical suspender connection.

#### 3.5 Foundations and Anchorages

At the west end, foundations for the tower, wind masts, backstays, and tower guys, are all located on clear, level ground, with no nearby embankments and no threat to stability. All anchorage steelwork at this end is in good condition.

At the east end, anchorages for the wind cables and main cable are located on a relatively steep embankment. The bank is well vegetated, and although there is some surface sloughing (see Fig. 18 and 19), there is no indication that it has undermined the anchorages to date.

The east end anchorages are all located within buried corrugated steel culverts. Originally, wood panels were used to backfill against on the uphill end. The wood has rotted away, and the ground has spilled inside onto the anchorage components. As a result of this condition the bolts at the south wind cable anchorage and the main cable anchorage are becoming quite corroded.



Fig. 14 - West backstay anchorage.

Fig. 15 - North-west tower guy anchorage.



Fig. 16 - Main cable anchorage at east bank.



Fig. 17 - South-east wind cable anchorage.

CWMM CONSULTING ENGINEERS LTD.

#### 3.6 Compound

There is a fenced compound at each end of the pipe that contains the tower, wind mast and all anchorages. As indicated, the west compound is located on flat ground with mainly grass vegetation, while the east compound is located on a relatively steep embankment with brush and small trees. The west compound fence is in good condition. The east compound fence is badly damaged at the northeast corner, having been affected by surficial ground sloughing.



Fig. 18 - East compound.



Fig. 19 – Damaged fence at east compound.

Fig. 19 - West compound.

Page 7

The aerial crossing at Shoreacres appears to be in relatively good condition, generally. The cables are in good condition with minimal signs of damage or rust. The profile and alignment of the pipe do not appear to have changed significantly since our last inspection, which is an indication that the structure, thus far, remains in a stable condition. As indicated, the coating on the tower and pipe is showing signs of deterioration. This is particularly true of the white coating which has been completely removed in some areas. However, there wasn't any major pitting or loss of sectional area noted at this time, either on the pipe, or structural steel tower components. Concrete elements appear sound.

Although surficial sloughing is evident at the east embankment, there doesn't appear to be any obvious signs of deep seated settlement or major sloughing to the extent that the structure geometry has been affected to date. Nonetheless, past geotechnical reports as well as the more recent 2009 report by Terasen Gas have indicated the potentially unstable nature of the east bank, which could potentially result in slope failure at some point, and loss of support for the anchorages.

The structure has been in service for over 50 years and it is our opinion that in its current state, with no additional remedial work, we would anticipate that the structure itself could have a life expectancy of 5 years or more, without considering the geotechnical issue of the embankment stability. Despite this, it is our recommendation that if the structure is to remain in service beyond 5 years, then certain remedial measures should be considered at this time, including the following:

- 1) A recoating of the pipe and steelwork components. There is a caution here that existing coatings may well contain lead based paint, and therefore containment will be needed to avoid having the deleterious materials from entering the waterway or surrounding areas.
- 2) Replacement of the seized roller supports. Note that this item poses challenges, as the pair of rollers at each vertical suspended are actually welded to the inside of the supporting pipe sleeve, and will need to be torch cut loose to allow new rollers to be welded back into the narrow space between the pipe and sleeve support.
- 3) The east end anchorages should be refurbished. Again, this operation presents some challenges as the anchorages are contained within metal culverts that are buried within the embankment, and to expose them would mean excavating the overburden, possibly with some additional slope retention above to support the excavation. The anchorages should then be cleaned and recoated, and the interior sloughing cleared to ensure that the anchors are completely uncovered, followed by reinstating the culvert protection.

Following the above measures for refurbishment, we would anticipate that the structure could remain operational for another 10 to 20 years without major

rehabilitation. It should be noted, that our assessment is based on our visual observations only, and that we have not carried out any structural testing of components. We also caution that the issue of embankment stability is deemed outside of the scope of this report, and is considered a geotechnical matter. The embankment issue could be the most significant issue affecting the longevity of the structure.

Report Prepared by:

ESSIO D. D. BERGMAN GINE June 29/00

Don D. Bergman, M.Eng., P.Eng., Principal

Appendix D KOOTENAY SHOREACRES RIVER AERIAL REPLACEMENT PROJECT COMPARATIVE ASSESSMENT, CCI JUNE 30, 2009


Terasen Gas Inc.

Kootenay Shoreacres River Aerial Replacement Project

**Comparative Assessment** 





Prepared by: Ed Douziech Date: June 30th, 2009 Revision 5 (May 2010)



# TABLE OF CONTENTS

| Summary                                                                     | 3             |
|-----------------------------------------------------------------------------|---------------|
| Overview                                                                    | 3             |
| Previous Engineering Analysis                                               | 3             |
| Comparative Assessment Scope                                                | 4             |
| HDD Design and Feasibility Criteria                                         | 5             |
| Geological Review                                                           | 6             |
| Evaluation of the Various Alignments Proposed                               | 7             |
| Shoreacres South Alignment<br>Lazaroff Alignment<br>Shallow Angle Alignment | 7<br>11<br>14 |
| Large Angle<br>Shoreacres North Alignment.<br>Technical Feasibility Summary |               |
| Cost Estimate for Large Angle                                               | 24            |
| Definitions                                                                 | 26            |
| Codes, Practices, and Guidelines                                            | 27            |





#### Summary

The proposed Kootenay Shoreacres Aerial Replacement Project herein is located northeast of Castlegar within the province of British Columbia. Terasen Gas Inc. proposes a single 168.3mm O.D. pipeline to cross the Kootenay River in order to replace the existing 219.1mm O.D. Kootenay River aerial pipeline crossing near the hamlet of Shoreacres, BC.

#### **Overview**

Pursuant to a request from Mr. Neil Bolger, Project Manager (Terasen Gas Inc.); Ed Douziech for Complete Crossings Inc. (CCI) attended a site reconnaissance to view a number of additional proposed pipeline water crossing alignments and subsequently analyzed all of the proposed crossing routes. A comparative feasibility assessment with all proposed trenchless crossing alignments is provided in this report in order to provide the stakeholders with the benefits of each alignment an provide them an opportunity to select a single crossing position to pursue for construction.

#### Previous Engineering Analysis

In the fall of 2008, the existing pipeline Aerial Crossing route and three additional alignments (Shoreacres South, Shallow Angle, and Large Angle) were analyzed as possible horizontal directional drill (HDD) alignments and comparatively analyzed by information gathered by site reconnaissance and desk top study. Feasibility of these four options were detailed within the previously submitted CCI Reconnaissance and Preliminary Crossing Feasibility report<sup>1</sup> with the Existing Parallel Route and Shoreacres South eliminated by insurmountable technical issues and cost. Preliminary feasibility on the remaining route, Large Angle (Preferred), was detailed on the available data and considered feasible.

In the winter of 2008, the Large Angle was further evaluated and quantified within CCI's Risk Assessment and Comparison Report<sup>2</sup>. This general route was broken into numerous iterations and three dimensionally quantified into two primary selected options; Option A and Option B. Option A was selected as having less technical risks than Option B and recommended as the best HDD alignment of the two if the logistics of the east plateau layout and exit location could be determined. Subsequent available data ruled out Option A's feasibility on the east plateau, resulting in Option B as the prime HDD alignment.

<sup>&</sup>lt;sup>2</sup> Kootenay River Risk Assessment and Comparison, CCI, December 4, 2008.



<sup>&</sup>lt;sup>1</sup> Kootenay River Reconnaissance and Preliminary Crossing Feasibility, CCI, September 10, 2008.



In the spring of 2009, two additional HDD alignments (Lazaroff and Shoreacres North) were added and feasibility was also scrutinized by site reconnaissance and data analysis. In summary review, there were six (6) alignments ultimately selected for the Kootenay River pipeline water crossing location. Of the six locations, one location (TP Option) was chosen for a possible non-trenchless construction (new bridge attachment or aerial) and was not part of this study. The remaining five (5) alignments are detailed to provide a final comparative assessment.

## **Comparative Assessment Scope**

This report provides a final comparative feasibility of the Five alignments; Shoreacres South, Lazaroff, Shallow Angle, Large Angle, and Shoreacres North.







#### HDD Design and Feasibility Criteria

All evaluated HDD alignments were designed maintaining understood industry standards and engineered tolerances within the available data. All evaluations were completed within 3 dimensional drafted designs accurate in all perspectives. Three general standards specifically used to assess HDD feasibility are technical, contractual, and economic. The scope of this report covers only HDD technical feasibility, contractual and economic were excluded.

Technical feasibility is defined by the HDD's ability to be successfully installed using existing technical standards, engineering tolerances, regulatory guidelines and codes of practice, regardless of uncertainties surrounding the cost or contractual issues.

| Pipeline Preferred Routing        | Site Assessment                         |
|-----------------------------------|-----------------------------------------|
| Stability of Slope Crossing       | Access                                  |
| Landowners Concerns               | Water Supply                            |
| HDD Methodology                   | Entry/Exit Points                       |
| Available Work Space              | Changes in azimuth                      |
| Geotechnical Site Investigation   | Navigation                              |
| Hydrological Evaluation           | Pull Back                               |
| Drill Path Design                 | Disposal of drilling fluid and cuttings |
| Casing Requirements               | Environmental                           |
| Fluid Containment                 | Regulatory Approval                     |
| Bank Setbacks                     | Design of Pipe and Pipe Coating         |
| Cover under the water body        | Required Drill Rig Equipment            |
| Reaming size and number of passes | Drilling Fluid Requirements             |
| Annular Pressure (AP)             | Construction Execution                  |
| Pipe Stress Analysis              |                                         |

Technical Feasibility assessment includes (but not limited to):

#### Specifically Annular Pressure and Pipe Stress analysis are discussed below:

Annular Pressure is the fluid pressure between the drill string and open hole (annulus) is the focus of this tolerance study. The occurrence of hydraulic fracturing, resulting in the migration of drilling fluid to the surface, when fluidic pressure within the borehole exceeds the shear strength or cohesion of the strata. Predicting borehole fluid pressures over a wide range of project parameters that can be used as a guide to minimize the occurrence of hydraulic fracturing.





Pipe Stress Analysis is a model of the load and stress for an HDD application is different from similar analysis of conventionally buried or laid pipelines because of the relatively high tension loads, bending, and external fluid pressures. Pilot hole profiles and alignments must be designed such that construction loads, that may exceed design loads, are mitigated to eliminate damage. Installation loads and stresses are the primary focus of this tolerance including the interaction of tension, frictional drag, fluidic drag, unbalanced gravity, bending, and external hoop.

#### **Geological Review**

As described in CCI's, September 2008 report<sup>3</sup>, two BGC Engineering Inc. studies were reviewed during the writing of this report. All relevant geophysical and geotechnical data was extrapolated from the investigated areas throughout the alignment options to provide a basis of a technical feasibility. The geotechnical and geophysical (seismic) investigation provided the majority of the relevant data necessary to conclude the technical feasibility of this all alignments on a geotechnical basis. Specifically, the three geotechnical boreholes (BGC06-01, 02, and 03) provided the necessary information to confirm HDD methodology with respect to the primary entry locations along the west bank (Shoreacres) and exit locations along the east bank (Glade Road area and north). Although actual conditions may vary significantly outside the geotechnical study area, it is assumed that the study would provide an adequate indication of subsurface conditions in order to conclude the technical feasibility of each option.

Two troublesome gravel areas defined for the west entry location (boreholes BGC06-03 and 02) with manageable silt and sand zones extending between them. The two zones as identified BGC06-02 were between 5 to 10 meters and the second extends to a depth of 18 to 23 meters. Casing installation was determined required to mitigate possible borehole collapse through both unconsolidated gravel zones. Most of the remaining drill alignments enter into bedrock (as inferred by geophysical) and remains in the bedrock until it nears the end of its transition to the final exit angle close to the eastern river bank.

A final troublesome zone is identified on the east bank location (north of Glade Road). This unconsolidated (gravel) zone identified by borehole BGC06-02 was found at a 25.5 meter to 27.5 meter depth. This zone is relatively thin and should be easily mitigated by typical or a-typical drilling fluid properties. At the projected HDD exit angles, the drilling assembly will pass through this zone within 5 meters

<sup>&</sup>lt;sup>3</sup> Kootenay River Reconnaissance and Preliminary Crossing Feasibility, CCI, September 10, 2008.





of the assembly length which it is highly unlikely that the available surface area of borehole would cause significant resistive force when combined with the properties of the drilling mud. Historical evidence strongly suggest that previous HDD activities<sup>4</sup> through very similar subsurface conditions posed little technical issues and progressed normally even with a-typical design characteristics.

Based on the inferred position of the bedrock, a mud motor assembly could be utilized for the entire drill path. However, given that the east bank subsurface conditions are mainly silt and sand, it is prudent to suggest that the contractor may elect to start with a jetting assembly and then change to a motor assembly when entering the bedrock.

#### **Evaluation of the Various Alignments Proposed**

#### **Shoreacres South Alignment**

The Shoreacres South HDD alignment has a 188° azimuth with an entry point on the east river bank where they the area has a lower slope (6% gradient, or 3.5°) and has good access on current roads. CCI Shoreacres South (Figure 1) shows the HDD drill plan for this proposal. Shoreacres South alignment was chosen after numerous iterations were tested.

The proposed Shoreacres South HDD specifications are summarized as follows:

| Shoreacres South                    |         |
|-------------------------------------|---------|
| Arc Radii                           | 300m    |
| Entry Angle                         | 18°     |
| Exit Angle                          | 18°     |
| Relative Exit Angle (to surface     | 17°     |
| topography)                         |         |
| Invert Elevation                    | 61m     |
| Depth (thalweg) / Depth (maximum)   | 23m/41m |
| Entry Tangent Length                | 142.6m  |
| Entry Arc Length                    | 94.2m   |
| Baseline Tangent Length             | 154.3m  |
| 1 <sup>st</sup> Exit Arc            | 125.6m  |
| 1 <sup>st</sup> Exit Tangent        | 35.2m   |
| 2 <sup>nd</sup> Exit Arc Length     | 31.4m   |
| 2 <sup>nd</sup> Exit Tangent Length | 29.7m   |

<sup>&</sup>lt;sup>4</sup> Columbia River HDD, Castlegar, B.C., The Crossing Company Inc., September 2008.





| Break-over Arc Radii                                                                                                                                                                                                                                                                                                                                                          | 300m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Break-over Arc Maximum Height                                                                                                                                                                                                                                                                                                                                                 | 10m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total Horizontal Length                                                                                                                                                                                                                                                                                                                                                       | 595.5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Bore Length                                                                                                                                                                                                                                                                                                                                                             | 613m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pipeline Specifications                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (common to all alignments):                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Outside Diameter                                                                                                                                                                                                                                                                                                                                                              | 168.3mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wall Thickness                                                                                                                                                                                                                                                                                                                                                                | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Operating Pressure                                                                                                                                                                                                                                                                                                                                                            | 6619Kpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Recommended Minimum Pipeline Wall                                                                                                                                                                                                                                                                                                                                             | 6.4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Thickness                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Recommended Pipeline Grade                                                                                                                                                                                                                                                                                                                                                    | 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Recommended Pipeline Coating                                                                                                                                                                                                                                                                                                                                                  | Fusion Bonded Epoxy (FBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Advantages                                                                                                                                                                                                                                                                                                                                                                    | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Alignment is straight providing for a simpler navigational setup.</li> <li>The straight alignment allows for an increase in navigational positional accuracy given its simpler design.</li> <li>Overall crossing length is the lowest possible increasing overall feasibility.</li> <li>The south exit location has a less complicated logistical set-up.</li> </ul> | <ul> <li>The exit location requires significant additional ROW and pipeline construction (approximately 700m) in extremely difficult and unstable terrain.</li> <li>The Annular Pressure study shows a higher risk of drilling fluid fracture to the surface within the watercourse on the north and south banks.</li> <li>The exit position located on the south provides little mitigation to loss of navigation or steering position due to its proximity to the watercourse.</li> <li>The drill path transverses through a majority of silt/sand and is projected to cross through a thin gravel projected from BGC06-01 borehole.</li> <li>There is no available ROW for dragsection.</li> </ul> |





Terasen Gas Inc. Kootenay River Comparative Feasibility Assessment



Shoreacres South looking along alignment near south exit (past power lines) towards entry point (across river)

## Shoreacres South Primary Risk Summary

A number of significant issues become apparent with the Shoreacres South alignment:

- a) The annular pressure study shows increased risk to Induced Hydraulic Fracture directly to the water body at two critical locations. These points of fracture are extremely difficult to correct by any mitigation method.
- b) The south alignment would require additional open cut construction (approximately 700m) from the eastern aerial tie-in to the proposed HDD south alignment exit location. The additional open cut construction would require a new southern ROW running parallel to the south power line boundary and would greatly increase the cost of this replacement proposal given the extremely difficult terrain.
- c) The additional ROW and open cut construction along the aggressive east side-slope from the existing pipeline ROW tie-in to the south exit location would be difficult to construct due to the undulating, 60% side-slope





topography. Any conventional open-cut construction may not avoid further slope instability given its close proximity to the current bank movement.

- d) The pipeline lay-down would require additional workspace required to facilitate the HDD installation which would need to be assembled on the east bank where there is no Terasen owned ROW. Furthermore, temporary workspace (TWS) would need to be constructed beyond the necessary ROW at an angle relative to the proposed HDD alignment.
- e) This alignment may exit (or transverse through, depending on length) through a known archaeological site.
- f) The available geological data on the south alignment does not provide quantitative proof of the absence of the gravel zones located on the northeast alignment. Due to the fact that the gravel zones on the northeast alignment should be mitigated by conventional means, the south alignment appears to provide no significant geological advantage.



Annular Pressure Graph (Figure 2)





## Feasibility Conclusions

The Shoreacres South poses significant risk to the environment and technical failure. The Shoreacres South Alignment should be considered technically infeasible given known existing logistical, geotechnical, and physical constraints prohibit mitigation of elements, spaces, features, environment, or specifications which are necessary for new pipeline construction.

#### Lazaroff Alignment

The Lazaroff alignment (approximately 287° azimuth) originating near Glade road targets the existing Terasen ROW near the end of Lazaroff road. The topographical elevation gains 35m on the west side and therefore entry will be on the east and exit to the west.

The proposed Lazaroff HDD specifications are summarized as follows:

| Lazaroff Alignment                                       |                                       |
|----------------------------------------------------------|---------------------------------------|
| Arc Radii                                                | 300m                                  |
| Entry Angle                                              | 18°                                   |
| Exit Angle                                               | 18°                                   |
| Relative Exit Angle (to surface                          | 13°                                   |
| topography)                                              |                                       |
| Invert Elevation                                         | 103.8m                                |
| Depth (thalweg) / Depth (maximum)                        | 35m/49.5m                             |
| Entry Tangent Length                                     | 180.9m                                |
| Entry Arc Length                                         | 94.3m                                 |
| Baseline Tangent Length                                  | 38.4m                                 |
| 1 <sup>st</sup> Exit Arc                                 | 125.6m                                |
| 1 <sup>st</sup> Exit Tangent                             | 129.6m                                |
| 2 <sup>nd</sup> Exit Arc Length                          | 31.4                                  |
| 2 <sup>nd</sup> Exit Tangent Length                      | 15.3                                  |
| Break-over Arc Radii                                     | 300m                                  |
| Break-over Arc Maximum Height                            | 6m                                    |
| Total Horizontal Length                                  | 615.9m                                |
| Total Bore Length                                        | 645.5m                                |
| Advantages                                               | Disadvantages                         |
|                                                          |                                       |
| Alignment is straight providing for a                    | • The exit location would be adjacent |
| simpler navigational setup.                              | to the current Terasen ROW and        |
| <ul> <li>The straight alignment allows for an</li> </ul> | has significant logistical obstacles  |





| increase in navigational positional<br>accuracy given its simpler design.<br>The east entry location has a simpler<br>logistical set-up. | to overcome.<br>The exit HDD drag section would<br>require assemble along existing<br>ROW and would need numerous<br>road restrictions or closures.<br>The Annular Pressure study shows<br>a higher risk of drilling fluid fracture<br>to the surface within the<br>watercourse and east banks.<br>The entry position provides little<br>mitigation to navigational proximity<br>issues. |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



Looking along alignment near south entry (adjacent to Glade Road) towards entry (past tree line)





#### Lazaroff Significant Risk Summary

A number of significant issues become apparent with the Lazaroff alignment:

- a) The annular pressure study shows increased risk to Induced Hydraulic Fracture within the extents of the water course. The restricted logistics of this alignment provides for little mitigation for surface drilling fluid fracture and/or loss of drilling fluid management. These locations would be extremely difficult to correct by any means and may not be possible to mitigate environmental effects.
- b) The Lazaroff alignment would also require additional pipelining (approximately 1000m) from the eastern aerial tie-in to the proposed HDD south alignment exit location. The additional pipelining would require a new southern ROW running parallel to the south hydro power line boundary and would greatly increase technical difficulties given the extreme terrain.
- c) The additional ROW and pipelining along the aggressive east side-slope from the existing tie-in to the south exit location would be difficult to construct due to the undulating, 60% side-slope topography. Any conventional open-cut construction may not avoid further slope instability given its close proximity to current bank movement near the east aerial bank structure.
- d) The necessary pipeline lay-down workspace required to facilitate the HDD installation would need to be assembled along the Terasen ROW, south of Lazaroff Road. Pipe handling during pullback would require significant TWS in order to facilitate installation into the borehole within pipe stress specifications.
- e) The available geological data on the south alignment does not provide quantitative proof of the absence of the gravel zones apparent on the northeast alignment. Due to the fact that the gravel zones on the northeast alignment should be mitigated by conventional means, the south alignment appears to provide no significant geological advantage.





Terasen Gas Inc. Kootenay River Comparative Feasibility Assessment



Annular Pressure Graph (Figure 3)

#### Conclusions

The Lazaroff alignment poses significant risk to the environment and technical failure. The Lazaroff Alignment should be considered technically infeasible given known existing logistical, geotechnical, and physical constraints which prohibit mitigation of the technical risks previously identified which are necessary for new pipeline construction. This alignment poses significant risk to the environment and technical failure and should not be considered feasible given the available data.

#### **Shallow Angle Alignment**

The Shallow Angle Alignment (approximately 71° azimuth) from the aerial tie-in targets the east river bank with large to extreme slopes (up to 83% gradient, or 40°) and only has a light trail access. Numerous iterations were tested within this general alignment with a final alignment chosen given its practical specifications.





The proposed Shallow Angle" HDD specifications are summarized as follows:

| Shallow Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arc Radii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 300m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Entry Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Exit Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relative Exit Angle (to surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| topography)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Invert Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Depth (thalweg) / Depth (maximum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43m/62m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Entry Tangent Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Entry Arc Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Baseline Tangent Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190.2m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 <sup>st</sup> Exit Arc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 174.3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 <sup>st</sup> Exit Tangent                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 151.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 <sup>nd</sup> Exit Arc Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 <sup>nd</sup> Exit Tangent Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Break-over Arc Maximum Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Horizontal Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 695m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Bore Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 736m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>Low to moderate overall risk assessment.</li> <li>Alignment is straight providing for a simpler navigational setup.</li> <li>The straight alignment allows for an increase in navigational positional accuracy given its simpler design.</li> <li>The drill path transverses through a majority of silt/sand and is projected to cross through a thin gravel projected from BGC06-01 borehole.</li> <li>Overall crossing length is the least possible, increasing overall feasibility.</li> </ul> | <ul> <li>The exit position located on the northeast plateau requires a larger amount of excavation for HDD construction and pipeline tie-in.</li> <li>The Annular Pressure study shows a higher risk of drilling fluid fracture to the surface near the north-east river bank and hill.</li> <li>The exit position located on the northeast plateau provides little mitigation to loss of navigation or steering position.</li> <li>The exit position located on the northeast plateau requires the greatest amount of pipe-handling planning and equipment and therefore an increase risk of handling damage and costs.</li> <li>The HDD exit angle is higher than typical design adding to pilot-hole</li> </ul> |





| <ul> <li>positional difficulties.</li> <li>The HDD alignment crosses partially across the Slocan River into the north acetion of</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| Shoreacres. This may require additional ROW.                                                                                                |



Looking near alignment on west bank (near entry) towards exit (just below hydro-line)

## Shallow Angle Significant Risk Summary

A number of significant issues became apparent with the Shallow Angle alignment assessment:

a) The Annular Pressure (AP) calculations have shown that the maximum achievable HDD profile has a risk to drilling fluid hydraulic fracture directly to the water body and surface within the toe and hill of the north-east slope. The technical and environmental effects would be extremely difficult (if not impossible) to mitigate if such an event was to occur.





- b) Within the exit location on the east slope, a large complex break-over arc radius will have to be maintained up to 12 meters in the air during the pipe pullback within a difficult topography. This pipe handling will require a higher level of planning, support, and oversight to ensure that damage does not occur to the line and that it is handled safely in the difficult terrain adjacent to the high voltage power lines. An estimated break-over height of 12 meters will require a minimum of a large track-hoe with a boom capable of such heights or a crane that can be mobilized to the exit location.
- c) An a-typical exit angle of 33 degrees poses some risk to the pilot hole navigation and positional control. If navigation and/or positional control is compromised, a risk of missing the exit location may occur. This is significant in that this position will require prior excavation and preparation and cannot allow for large changes in HDD exit location. Furthermore, a major change in exit position toward the hydro-power line R/W would mean a more difficult or infeasible pullback.
- d) The necessary pipeline lay-down workspace required to facilitate the HDD installation would need to be assembled along the Terasen ROW within aggressive undulating slopes.
- e) The available geological data on the south alignment does not provide quantitative proof of the absence of the gravel zones apparent on the northeast alignment. Due to the fact that the gravel zones on the northeast alignment should be mitigated by conventional means, the south alignment appears to provide no significant geological advantage.







Annular Pressure Graph (Figure 4)

#### Conclusions

The Shallow Angle alignment poses significant risk to the environment and technical failure. The Lazaroff Alignment should be considered technically infeasible given known existing logistical, geotechnical, and physical constraints prohibit mitigation of elements, spaces, features, environment, or specifications which are necessary for new pipeline construction. The total length of the crossing

## Large Angle

The Large Angle alignment (approximately 55° azimuth) from the aerial tie-in targets the east river bank with moderate to large slopes (up to 53% gradient, or 28°) and has good trail access. Numerous iterations were tested within this general alignment with a final alignment chosen given its practical specifications. The proposed Large Angle HDD specifications are summarized as follows:





| Large Angle                              |                                                                        |
|------------------------------------------|------------------------------------------------------------------------|
| Arc Radii                                | 300m                                                                   |
| Entry Angle                              | 18°                                                                    |
| Exit Angle                               | 17°                                                                    |
| Relative Exit Angle (to surface          | 17°                                                                    |
| Invot Elevation                          | 131m                                                                   |
| Depth (thalweg)                          | 41m                                                                    |
| Entry Tangent Length                     | 129m                                                                   |
| Entry Arc Length                         | 94m                                                                    |
| Baseline Tangent Length                  | 174m                                                                   |
| Exit Complex Arc                         | 287m                                                                   |
| Exit Complex Arc Azimuth Turn            | 128°                                                                   |
| Exit Complex Arc Vertical Turn           | 17°                                                                    |
| Exit Tangent                             | 194m                                                                   |
| Break-over Arc Radii                     | 90m                                                                    |
| Break-over Arc Maximum Height            | 6m                                                                     |
| Total Horizontal Length                  | Undefined in 2D                                                        |
| Total Bore Length                        | 878m                                                                   |
| Advantages                               | Disadvantages                                                          |
| • The exit position located on the       | The alignment is complex increasing                                    |
| northeast plateau provides for the       | the navigational setup and difficulty.                                 |
| maximum mitigation to loss of            | <ul> <li>The complex alignment decreases</li> </ul>                    |
| navigation and control.                  | positional accuracy.                                                   |
| • The exit position located on the       | <ul> <li>This overall crossing length is the 2<sup>nd</sup></li> </ul> |
| northeast plateau requires the least     | largest and therefore inherently poses                                 |
| amount of excavation for HDD             | an increased risk.                                                     |
| construction and pipeline tie-in.        | • The drill path transverses through a                                 |
| • The exit position requires the least   | majority of silt/sands and is projected                                |
| amount of pipe-handling and              | to cross though a thin gravel                                          |
| equipment and therefore decreases        | projected from BGC06-01 borehole                                       |
| the risk of handling damage.             | with a complex design.                                                 |
| • The exit angle is typical and is       | <ul> <li>Some loss of differential pressure at</li> </ul>              |
| considered low risk in navigational      | the bit face may occur reducing                                        |
| control.                                 | forward momentum as drill pipe key-                                    |
| • The Annular Pressure study shows a     | seating increases friction.                                            |
| lower risk of drilling fluid fracture to |                                                                        |
| the surface anywhere along the drill     |                                                                        |
| path profile.                            |                                                                        |







Looking near curved alignment on west bank (near entry) towards exit (just below hydro-line)

Large Angle Significant Risk Summary

A number of significant issues become apparent with the Large Angle alignment:

- a) Some risks are associated with the complex design. The HDD bore path will need to turn vertically and horizontally at the same time. This process of steering is not indifferent from any other type of directional drilling and therefore is no more difficult; however the navigational setup requires a higher level of complexity and skill to operate and may introduce positional errors if done incorrectly.
- b) The overall drill distance is the 2<sup>nd</sup> longest of all alignments. This increase in length inherently poses an additional risk as longer HDD's typically are more problematic. The overall length however is still considered moderate in current standards.
- c) An additional risk is the drill path will transverse through the identified gravel zone (BGC06-01) within its complex arc. This may pose some





difficulty to the Bottom Hole Assembly (BHA) in that the distance to travel through this zone will be slightly longer than what is needed in any other option. As this distance is increased by only 2 meters (relative to straight alignment), this risk is expected to be small. Furthermore, the large complex arc may introduce bending forces vectored away from the pilot hole direction increasing the friction of the drill pipe on the annulus (keyseating) causing loss of bit pressure on the formation (differential pressure). This may reduce the footage rate production of the rig and some navigational control.

d) The necessary pipeline lay-down workspace required to facilitate the HDD installation would need to be assembled along the Terasen ROW within moderate undulating slopes.

Pressure (Psi) PRESSURE CURVES FOR CASTLEGAR CROSSING (Large Angle) 97/8" Pilot hole w/ Jetting Assembly



Annular Pressure Graph (Figure 5) **Conclusions** 

The Large Angle alignment poses the least technical and environmental risk than all studied alignments. Given the available data, all known significant technical issues can be mitigated by currently understood HDD mitigation techniques and therefore should be considered technically feasible.





#### **Shoreacres North Alignment**

The Shoreacres North alignment (approximately 72° azimuth) targets the east upper plateau with a general flat slope (2% gradient, or 3.5°) and has easier access given the current roads. With a 153m elevation gain on the east side, the alignment must occur from entry on the west and exit on the east. The proposed Shoreacres North HDD specifications are summarized as follows:

| Shoreacres North Alignment                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arc Radii                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300m                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Entry Angle                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18°                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Exit Angle                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18°                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Relative Exit Angle (to surface                                                                                                                                                                                                                                                                                                                                                                                                              | 5°                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| topography)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Invert Elevation                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/m                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Depth (thalweg) / Depth (maximum)                                                                                                                                                                                                                                                                                                                                                                                                            | 35m/35m                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Entry langent Length                                                                                                                                                                                                                                                                                                                                                                                                                         | 267./m                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Entry Arc Length                                                                                                                                                                                                                                                                                                                                                                                                                             | 94.3m                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Baseline Langent Length                                                                                                                                                                                                                                                                                                                                                                                                                      | 66.1m                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 <sup>st</sup> Exit Arc                                                                                                                                                                                                                                                                                                                                                                                                                     | 157.1m                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 <sup>st</sup> Exit langent                                                                                                                                                                                                                                                                                                                                                                                                                 | 355.8m                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2 <sup>nd</sup> Exit Arc Length                                                                                                                                                                                                                                                                                                                                                                                                              | 62.8m                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 <sup>th</sup> Exit Tangent Length                                                                                                                                                                                                                                                                                                                                                                                                          | 22.7m                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Break-over Arc Radii                                                                                                                                                                                                                                                                                                                                                                                                                         | 300m                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Break-over Arc Maximum Height                                                                                                                                                                                                                                                                                                                                                                                                                | 4m                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Total Horizontal Length                                                                                                                                                                                                                                                                                                                                                                                                                      | 950.4m                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| I otal Bore Length                                                                                                                                                                                                                                                                                                                                                                                                                           | 1026.5m                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                   | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>Moderate overall risk assessment.</li> <li>Alignment is straight providing for a simpler navigational setup.</li> <li>The straight alignment allows for an increase in navigational positional accuracy given its simpler design.</li> <li>The drill path transverses through a majority of silt/sand and is projected to cross through a thin gravel projected from BGC06-01 borehole with a straight alignment design.</li> </ul> | <ul> <li>The exit position located on the east upper plateau requires working around the Hydro power line ROW for HDD construction and pipeline tie-in. Break-over operations require mitigation.</li> <li>The Annular Pressure study shows a higher risk of drilling fluid fracture to the water body surface near the east river bank and hill.</li> <li>The exit position located on the east plateau requires the largest pipe-</li> </ul> |





## Shoreacres North Significant Risk Summary

A number of significant issues become apparent with the Shoreacres North alignment:

- a) The overall length of the crossing is the greatest of all alignments. This is due to the set-back requirements of AP model and the logistics of the exit location in close proximity to the multiple high voltage power lines and ROW's. The minimum length at 1026m, although moderate in typical bedrock designs, becomes increasingly technically difficult in silt/sand.
- b) The Annular Pressure (AP) calculations have shown that the maximum achievable HDD profile has some risk of hydraulic fracture to the water body within the east bank area and toe of slope. Although this area of concern is small in comparison to other alignments, its potential is high and its specific location would be difficult to mitigate.
- c) The necessary pipeline lay-down workspace required to facilitate the HDD installation would need to be assembled beyond the power line ROW's (east of intersection of power ROW and Terasen ROW) along the Terasen ROW within moderate undulating slopes.
- d) The entry location would require an approximate 2kms of additional pipeline and ROW throughout the Shoreacres residential community to the north. This proposal would be extremely technically challenging given the land-owner proximity and current infrastructure.







Annular Pressure Graph (Figure 6)

#### Conclusions

The Shoreacres North alignment poses a significant risk to the environment and technical failure. The Shoreacres North alignment should be considered technically infeasible given known existing logistical, geotechnical, and physical constraints.

#### **Technical Feasibility Summary**

| Shoreacres South | Technically Infeasible |
|------------------|------------------------|
| Lazaroff         | Technically Infeasible |
| Shallow Angle    | Technically Infeasible |
| Large Angle      | Technically Feasible   |
| Shoreacres North | Technically Infeasible |

## Cost Estimate for Large Angle

The estimated cost for the HDD construction, based on the available data is for the 878 meter for the Large Angle Alignment. The estimate includes for off-site, facility disposal of all drilling fluid and cuttings





(based on latest approvals/estimates). Remote facility disposal was selected based on the current understanding of available agricultural land and possible land-spray/mix-bury sites. Future assessments will attempt to garner approvals for alternative disposal methodologies that may provide significant cost savings.

Estimated pricing only defines the HDD contractor's scope of work and <u>does not</u> include:

- a) Site preparations
- b) Access / towing
- c) Pipeline procurement, assembly, coating, testing, and handling
- d) Additional pipeline equipment / support (side booms, rollers, lighting, etc)
- e) Pipeline tie-in
- f) Third party costs (Engineering, Inspection, Environmental Assessments/Approvals and monitoring, etc.)

Respectfully submitted,

Car

Ed Douziech Project Manager Complete Crossings Inc. (CCI)

Reviewed by:

Brent Goerz V.P. of Engineering Complete Crossings Inc. (CCI)







# Terasen Gas Inc.

Kootenay River Comparative Feasibility Assessment

## **Definitions**

| Annular Pressure              | The fluid pressure acting on the formation measured in the space                                                                                                                                                                                                                     |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (AP)                          | between the drill stem and the wall of the bolehole.                                                                                                                                                                                                                                 |
| Arc<br>Atterberg Limits       | The liquid and plastic limits of a fine-grained soil that provide details of its non-plastic, plastic and fluid states. This provides information on the volume change of a material as the moisture content is increased.                                                           |
| Azimuth                       | Direction change in the horizontal plane.                                                                                                                                                                                                                                            |
| Bottom Hole<br>Assembly (BHA) | Tools used in directional drilling that includes bit, bent sub, mud<br>motor, steering tool, annular pressure tool, and all other<br>connections to provide directional control, information gathering,<br>and drilling power that lets the drill progress through the<br>formation. |
| Borehole                      | The area of earth removed from the surface entry point to the end of the drilled portion.                                                                                                                                                                                            |
| Build rate                    | The increase/decrease of degrees per specific length.                                                                                                                                                                                                                                |
| Casing                        | Surface pipe that is installed through unstable geotechnical <b>areas</b> to provide a conduit for the down-hole tools and drilling fluid.                                                                                                                                           |
| Drill stem                    | Steel drill pipe that is approximately 10 meters long / 4 to 6 inches in diameter used to control and transfer fluid in a directional drill.                                                                                                                                         |
| Drill bit                     | A device that cuts into the formation and progresses the borehole.                                                                                                                                                                                                                   |
| Dogleg Severity               | The difference of inclination/azimuth for any three joint section.                                                                                                                                                                                                                   |
| Down-hole tool                | Any tools that are used at the end of the drill string to physically complete the bore and to provide directional and other information.                                                                                                                                             |
| Hydraulic fracture            | The process of annular pressure opening a fracture or inducing<br>an existing fracture in the formation during the drilling process.                                                                                                                                                 |
| Inclination                   | Direction change in the vertical plane.                                                                                                                                                                                                                                              |
| Measured                      | Length of the borehole measured along the bore path depth from the surface to the bottom of the borehole.                                                                                                                                                                            |
| Monel                         | Non-magnetic drill stem used in the bore hole in order to isolate the steering/guidance tool from magnetic interference.                                                                                                                                                             |
| Mud motor                     | A mechanical device that transforms hydraulic power to mechanical power in order to turn the drill bit and progress the borehole.                                                                                                                                                    |
| "No Drill Zone"               | An area below and to each side of the banks as outlined by the                                                                                                                                                                                                                       |



2



|                                | investigating engineer to allow for an adequate barrier under the                                                                                                                                                                                 |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pipe Break Over                | A length of product pipe required to deflect in order for the pipe section to align with the borehole exit angle.                                                                                                                                 |
| Pipe Pullback                  | The procedure of installation of the product pipe into a properly sized borehole.                                                                                                                                                                 |
| Penetration rate-              | The distance of advance of a drill bit / reamer in a specific period of time.                                                                                                                                                                     |
| Pilot hole                     | The initial borehole drilled through the formation. Usually between 6 <sup>3</sup> / <sub>4</sub> " and 12" in diameter.                                                                                                                          |
| Product pipe                   | Pipe to be installed through the borehole at the completion of the HDD drill to carry product through the crossing location.                                                                                                                      |
| Pull-head                      | A device welded onto the product pipe section that is used to connect the drill pipe, swivel and rig to the product pipe section for pulling the drill pipe through the completed bore.                                                           |
| Radius of curvature            | The arc length multiplied by the degrees of arc in radians.                                                                                                                                                                                       |
| Reaming pass                   | The subsequent pass(es) through the pilot hole to widen the diameter to the required size for pulling the product pipe.                                                                                                                           |
| Steering/guidance              | Specific tools that provides steering direction information to the tool operator or directional driller.                                                                                                                                          |
| Swivel                         | A device positioned in between the product pipe and the drill<br>string that allows rotation of the drill stem but not the product<br>pipe as tension is applied from the drill rig during the installation<br>of the pipeline into the borehole. |
| Tangent                        | Straight section on each end of the arcs along the bore path trajectory.                                                                                                                                                                          |
| Total Vertical Depth<br>(TVD)- | Depth measured from the entry point vertically.                                                                                                                                                                                                   |

## Codes, Practices, and Guidelines

B.C. Oil and Gas Commission CSA Z662 Oil and Gas Pipeline Guidelines (2007) American Gas Association Guidelines Fisheries Act Water Course Crossings (Second edition Canadian Pipeline Water Crossing Committee, Nov. 1999) Navigable Waters Protection Act



Appendix E HDD GEOTECHNICAL INVESTIGATION FOR KOOTENAY RIVER CROSSING, BGC ENGINEERING DEC 18, 2009



# **TERASEN GAS INC.**

# SHOREACRES

# HORIZONTAL DIRECTIONAL DRILLING GEOTECHNICAL INVESTIGATION FOR KOOTENAY RIVER CROSSING

# **FINAL REPORT**

PROJECT NO: 0093-076

DISTRIBUTION:

DATE: December 18, 2009

Terasen 3 copies

BGC 3 copies



December 18, 2009 Project No. 0093-076

Mr. Neil Bolger, P.Eng Terasen Gas Inc. 16705 Fraser Hwy Surrey BC, V3S 2X7

Dear Mr. Bolger,

#### Re: <u>Horizontal Directional Drilling Geotechnical Investigation for Kootenay River</u> <u>Crossing</u>

Please find attached three copies of our above referenced report dated December 18, 2009. We would like to take this opportunity to thank you for allowing our participation in this project. If you have any questions about this report, the project in general, or any other topic that we may be able to assist you with, please do not hesitate to contact us.

Yours sincerely,

BGC ENGINEERING INC. per:

Dr. Alex Baumgard, P.Eng., P.Geo. Senior Geotechnical / Environmental Engineer

AB/mb

# TABLE OF CONTENTS

| TABLE C               | OF CONTENTSi                        |  |
|-----------------------|-------------------------------------|--|
| LIST OF               | TABLES ii                           |  |
| LIST OF FIGURES ii    |                                     |  |
| LIST OF APPENDICES ii |                                     |  |
| LIMITATIONS iii       |                                     |  |
| 1.0 IN                | TRODUCTION4                         |  |
| 1.1. B                | ackground4                          |  |
| 1.2. S                | cope of Work                        |  |
| 2.0 SI                | TE INVESTIGATION                    |  |
| 2.1. G                | eotechnical Drilling Investigation5 |  |
| 2.1.1                 | I. BGC09-015                        |  |
| 2.1.2                 | 2. BGC09-02                         |  |
| 2.1.3                 | BGC09-037                           |  |
| 2.2. La               | aboratory Testing7                  |  |
| 2.2.1                 | I. Grain Size Analysis7             |  |
| 2.2.2                 | 2. Atterberg Limits Test            |  |
| 2.2.3                 | 3. Uniaxial Compression Test10      |  |
| 2.3. G                | eophysical Survey                   |  |
| 2.4. S                | tratigraphy11                       |  |
| 3.0 DI                | SCUSSION & RECOMMENDATIONS13        |  |
| 4.0 CL                | OSURE                               |  |
| REFERE                | NCES                                |  |

# LIST OF TABLES

| Table 1 | Results of Grain Size Analysis           | .8 |
|---------|------------------------------------------|----|
| Table 2 | Results of the Atterberg Limits Test     | .9 |
| Table 3 | Results of the Uniaxial Compression Test | 10 |

# LIST OF FIGURES

| Figure 1 | Grain Size Curves from the 7 Tested Samples8 |
|----------|----------------------------------------------|
| Figure 2 | Plasticity of Selected Samples9              |

# LIST OF APPENDICES

APPENDIX I PHOTOGRAPHS & DRAWINGS

APPENDIX II BOREHOLE LOGS

APPENDIX III LABORATORY TESTING RESULTS

APPENDIX IV GEOPHYSICS REPORT

# LIMITATIONS

BGC Engineering Inc. (BGC) prepared this document for the account of Terasen Gas Inc. The material in it reflects the judgment of BGC staff in light of the information available to BGC at the time of document preparation. Any use which a third party makes of this document or any reliance on decisions to be based on it is the responsibility of such third parties. BGC accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this document.

As a mutual protection to our client, the public, and ourselves, all documents and drawings are submitted for the confidential information of our client for a specific project. Authorization for any use and/or publication of this document or any data, statements, conclusions or abstracts from or regarding our documents and drawings, through any form of print or electronic media, including without limitation, posting or reproduction of same on any website, is reserved pending BGC's written approval. If this document is issued in an electronic format, an original paper copy is on file at BGC and that copy is the primary reference with precedence over any electronic copy of the document, or any extracts from our documents published by others.

#### 1.0 INTRODUCTION

#### 1.1. Background

BGC Engineering Inc. (BGC) understands that Terasen Gas Inc. (Terasen) intends to replace their Kootenay River (Shoreacres) aerial pipeline crossing, located approximately 20 km north of Castlegar BC. The eastern approach of the aerial crossing is subject to local instabilities which result in an increased risk of pipeline failure. To reduce this risk, Terasen is considering relocating the crossing by horizontal directional drilling (HDD) beneath the Kootenay River.

An initial geotechnical feasibility study was carried out at the Kootenay River crossing as part of a preliminary HDD route being decided upon by Terasen (BGC 2008). The 2009 revised route alignment proposed by Terasen places the HDD beginning near to the current tower location on the western approach of the aerial crossing that then passes under both the Slocan River and Kootenay River exiting approximately 700 m to the north of the current pipeline location on the eastern approach. In order to further assess the viability of this proposed HDD route and to advance into detailed engineering design, additional subsurface information was requested by Terasen.

#### 1.2. Scope of Work

BGC's scope of work was to carry out deeper and more extensive investigations of the subsurface conditions along the eastern approach of the proposed Kootenay River HDD path at sites agreed upon with Terasen. The purpose of this investigation was to determine if the subsurface lithology is favorable for constructing the proposed HDD crossing along the east shore and beneath the Kootenay River. The results of the investigation will assist in providing geotechnical information to Terasen's pipeline designers as well as form part of a bidding information package for HDD contractors.

Authorization to proceed with the work was received from Terasen on August 31, 2009 under the purchase order 4500031612.

In order to carry out this project and as part of the agreed upon scope of work, the following methodology was adopted:

- 1. Obtain soil and rock geotechnical properties with depth from boreholes and geophysical information.
- 2. Create a refined interpreted stratigraphic section along the proposed HDD right-ofway (RoW) incorporating changes to the route from the 2009 route revision.

#### 2.0 SITE INVESTIGATION

A detailed field investigation consisting of mud-rotary drilling, diamond drilling, and geophysics was conducted along the proposed HDD route and the existing Terasen pipeline Right-of-Way (RoW). Contractors from Geotech Drilling Services Ltd. based in Prince George, BC, and Frontier Geosciences Inc. based in North Vancouver, BC, were contracted to complete the drilling and geophysical surveys respectively. Acme Excavating Ltd. was contracted to build drill pads and assist moving the drill up the steep access road and Sorensen Excavating transported drilling water to the site.

During the field investigation, Michael Beaupre, E.I.T., provided full-time basis site supervision and Dr. Alex Baumgard, P.Eng, P.Geo, visited the site on September 23, 2009 along with Mr. Neil Bolger, P.Eng and Mr. David Kan, P.Eng of Terasen.

Prior to drilling, Hinterland Surveying & Geomatics Inc. and a Terasen inspector located the Terasen RoW and all utilities. BC One Call provided verbal conformation that no additional registered utilities were present at the borehole sites.

#### 2.1. Geotechnical Drilling Investigation

Three boreholes were drilled on the existing Terasen RoW located to the north of the current Kootenay River crossing between September 17<sup>th</sup>, 2009 and October 2<sup>nd</sup>, 2009. Locations of the boreholes are shown in Drawing 1 and the detailed borehole logs are provided in Appendix II.

Soil and rock samples obtained from standard penetration testing (SPT) and diamond drilling were photographed and logged using the visual soil and rock classification in accordance with Canadian industry standards (CFEM 2006). All soil samples were retained, and select samples were sent to a laboratory for soil index testing. The rock core that was not sampled was transported to the Terasen fenced yard enclosure located on the west side of the Kootenay River for storage. Photographs of the collected soil samples and cored rock are provided on a CD included with a hard copy of this report. The location of each borehole was recorded with a handheld GPS with accuracy at or better than  $\pm 10$  m.

#### 2.1.1. BGC09-01

BGC09-01 is located approximately 300 meters to the north of the current aerial crossing (Drawing 1). It was drilled from September 19<sup>th</sup> to 23<sup>th</sup>, 2009 and proceeded to a depth of 76.3 m without incident. BGC09-01 was drilled in a similar location to BGC06-01. The purpose of BGC09-01 was to determine the soil stratigraphy at the revised depth of the HDD crossing (as BGC06-01 had been previously terminated at 28.7 m). Shallow SPT samples were not taken in borehole BGC09-01 due to its similar location and soil stratigraphy to BGC06-01.

The first 3 m of BGC09-01 consisted of an interbedded sand and silt. Immediately below this was a poorly graded fluvial sand unit to 8.1 m, followed by uniform low plastic silt unit to 26.1 m. A well graded layer of dense gravels occurs from 26.1 m until 27.8 m. This gravel layer is underlain by well graded sand that sits overtop of bedrock that occurs at 29.6 m. The bedrock encountered in BGC09-01 consists of two units which includes a metamorphosed volcanic Rhyolite and volcanic Dacite. The foliated metamorphosed Rhyolite makes up the majority of the underlying bedrock; however, the volcanic Dacite occurs as what are interpreted to be several dikes, with a maximum thickness of 4 m, between depths of 32.6 m and 58.5 m. Below 58.5 m until the end of the hole at 76.3 m, the metamorphosed Rhyolite is again present. The rock quality designation (RQD) varies from 75 to 100 % for the section of the proposed HDD crossing and recovery was good throughout the hole. Some 0.1 to 0.2 m fault zones were noticed in the underlying bedrock with the highest concentration between depths of 61.5 m and 65.1 m. The faults appear to be related to local failures along joint planes as no major sections of highly fractured rock were encountered.

After the target depth of the borehole was achieved, the drill casing became locked within the underlying gravel unit. The approximate depth to groundwater on September 23<sup>rd</sup>, 2009 was 5.2 m; however, artesian conditions developed with the casing two days after the target depth of the borehole was achieved. After the casing was pulled, the borehole was filled with a bentonite cement.

#### 2.1.2. BGC09-02

Drilling of BGC09-02 commenced on September 25<sup>th</sup>, proceeded through to September 30<sup>th</sup> 2009, and reached the target depth of 75.7 m without incident. Due to a broken SPT hammer, SPT's were not taken on the initial borehole. Once the target depth was achieved and the SPT hammer was fixed, a second parallel borehole was drilled with a 1 m offset to the first hole and SPT's were completed in the upper soil section. SPT samples were taken at 1.5 m intervals with the exception of samples taken at 3 m intervals in the thicker gravel layer that occurs between the approximate depths of 4.5 m and 8.95 m.

The first 3.9 m consists of a sandy silt which is underlain by a dense sand and gravel to a depth of 4.5 m. Immediately below this was a gravel layer that increases in cobble and boulder content with depth until 8.95 m, followed by a gravel and sand layer to 13.1 m. A very dense gravel layer occurs from 13.1 m until the bedrock contact at 14.49 m. Similar to BGC09-01, the underlying bedrock consists of a metamorphosed volcanic Rhyolite and a volcanic Dacite. Several Dacite dikes are interpreted to occur that are approximately 2 m thick, at depths of 15.75 m and 34.1 m whereas a 7.75 m thick dike occurs at 41.75 m. The remaining section from 49.5 m until the end of the hole at 75.7 m consists of the foliated metamorphosed volcanic Rhyolite. The RQD varies from 70 to 100 % for the section of the proposed HDD crossing. Recovery was good throughout the borehole and varied from 80 to 100 %. Several 0.1 to 0.2 m fault zones were noticed starting at a depth of 18 m and with a
spacing of approximately 10 m. The faults had minor clay gouge and appear to be due to local failures along joint planes.

The borehole was terminated upon reaching the target depth of 75.7 m. The approximate depth to the water table on September 30<sup>th</sup>, 2009 was 4.6 m below the ground surface. After the completion of the hole, it was filled and sealed with a bentonite cement.

## 2.1.3. BGC09-03

BGC09-03 was drilled from October 2<sup>nd</sup>, to 3<sup>rd</sup>, 2009 to a final depth of 19.3 m. Based on the trend of the depth to bedrock along with consistency and type of rock encounter in the two previous drill holes, BGC09-01 and BGC09-02, a decision was made with Terasen to terminate BGC09-03 once 10 m of bedrock was drilled. SPT samples were taken at 1.5 m intervals until bedrock was encountered.

The first 0.5 m of BGC09-03 consisted of colluvial/fill material containing well graded sands and gravels. Below this layer, low plastic silt occurs to 6.4 m, which is then underlain by a 0.3 m thick layer of well graded sands and gravels. Bedrock, consisting of the previously mentioned volcanic Dacite, was encountered at a depth of 6.7 m below the ground. A large Quartz dike, up to 2.7 m in length, started at 14.2 m and the remaining section of the borehole consists of the overlying volcanic Dacite.

Upon completion of the hole at 19.3 m, it was filled and sealed with a bentonite cement. Groundwater was not encountered during the drilling of BGC09-03.

## 2.2. Laboratory Testing

Laboratory testing was performed on select SPT and rock core samples by Golder Associates of Burnaby, BC. Grain size analyses and Atterberg Limits tests were completed to determine representative engineering properties of the soil. Uniaxial Compression Tests were completed to determine the strength of the underlying rock. Sample depths are shown on the borehole logs found in Appendix II and the lab results are provided in Appendix III.

## 2.2.1. Grain Size Analysis

Grain size distributions for representative sediment units were determined in accordance with ASTM standard D422.

Table 1 presents a summary of the grain size analyses and Figure 1 shows the grain size distributions.

| Barahala | Sample | Depth from | Depth to |         | G      | rain Siz | ze (%) |         |
|----------|--------|------------|----------|---------|--------|----------|--------|---------|
| Dorenoie | Sample | (m)        | (m)      | 0303    | Gravel | Sand     | Silt   | Clay    |
|          | Grab 2 | 8.2        | 9.11     | GW/SW   | 49.9   | 34.3     | 15.8   | (fines) |
|          | SPT 2  | 3.05       | 3.5      | CL - ML | 7.4    | 22.6     | 61.5   | 8.5     |
| BGC09-02 | SPT 4  | 7.62       | 8.07     | GW      | 65.8   | 21       | 13.2   | (fines) |
|          | SPT 5  | 10.67      | 11.12    | GW/SW   | 52     | 33.4     | 14.6   | (fines) |
|          | SPT 6  | 13.14      | 13.59    | GW      | 71.1   | 17.8     | 11.1   | (fines) |
|          | SPT 2  | 3.05       | 3.5      | ML      | 0      | 4        | 91     | 5       |
| DGC09-03 | SPT 3  | 4.57       | 5.02     | ML      | 0      | 2        | 90     | 8       |

#### **Table 1 Results of Grain Size Analysis**



Figure 1 Grain Size Curves from the 7 Tested Samples

The grain size curves of the well graded gravel and sand (GW/SW) samples are relatively shallow lying, which indicates a wide range of sediment sizes often found in fluvial deposits. The steeper curve of the well graded gravels (GW) is due to the lack of sand found in the above samples.

The three finer grained silt (ML) and sandy silt (ML-CL) samples are found to the right in the graph. The sandy silt (CL-ML) sample contains a higher percentage of sand when compared to the cleaner silt (ML) samples which results in a shallower gradation curve and ultimately a wider range of sediment sizes.

N:\BGC\Projects\0093 Terasen\076 - Castlegar Shoreacres HDD 2009\05 - Reporting\Shoreacres\_HDD\_final.doc Page 8

### 2.2.2. Atterberg Limits Test

Atterberg limits test according to ASTM standard D4318 was completed for the fine grained samples. Table 2 below summarizes the Atterberg limits test.

Table 2 Results of the Atterberg Limits Test

| Borehole | Sample | Depth<br>from<br>(m) | Depth<br>to (m) | Water<br>Content<br>(%) | Liquid<br>Limit<br>(%) | Plastic<br>Limit<br>(%) | Plasticity<br>Index (%) | Plasticity |
|----------|--------|----------------------|-----------------|-------------------------|------------------------|-------------------------|-------------------------|------------|
| BGC09-02 | SPT 2  | 3.05                 | 3.5             | 21                      | 24                     | 20                      | 4                       | CL - ML    |
|          | SPT 2  | 3.05                 | 3.5             | 21                      | 31                     | 26                      | 5                       | ML         |
| DGC09-03 | SPT 3  | 4.57                 | 5.02            | 36                      | 37                     | 30                      | 7                       | ML         |



Figure 2 Plasticity of Selected Samples

The results of the Atterberg limits test for the three fine-grained samples are shown graphically above in Figure 2. The fine-grained soils are classified as silts with low plasticity as they plot on or below the A-Line on the above graph. From an engineering perspective, these low plastic silts will not pose significant problems such as volume expansion, excessive caving provided that adequate wall support is maintained, or be overtly hard during drilling.

### 2.2.3. Uniaxial Compression Test

A total of 12 Uniaxial Compression Test's (UCT) were completed according to ASTM standard D7012. Table 3 found below provides the results from the UCT on the selected rock samples from various borehole locations.

Results from the UCT's on the selected samples shows the average compressive strength of Rhyolite is 81 MPa, with a maximum of 101 MPa and a minimum of 36 MPa. The tested samples from the Dacite unit have an average compressive strength of 113 MPa, with a maximum of 202 MPa and a minimum value of 30 MPa. Based on a single sample, the strongest rock encountered with a compressive strength of 230 MPa was the Quartz dike found in the third borehole.

| Borehole | Sample<br># | Rock<br>Type | Depth<br>from<br>(m) | Depth<br>to (m) | Water<br>Content<br>(%) | Dry<br>Density<br>(Kg/M³) | Compressive<br>Strength (MPa) |
|----------|-------------|--------------|----------------------|-----------------|-------------------------|---------------------------|-------------------------------|
|          | 1           | Rhyolite     | 31.86                | 32.16           | 0.11                    | 2718                      | 74.02                         |
|          | 2           | Dacite       | Sam                  | ple broken      | during shipm            | ent to lab. To            | o short to test.              |
| DGC09-01 | 3           | Rhyolite     | 50.25                | 55.55           | 0.09                    | 2738                      | 100.79                        |
|          | 4           | Rhyolite     | 71.90                | 72.20           | 0.20                    | 2772                      | 80.02                         |
|          | 1           | Rhyolite     | 24.01                | 24.30           | 0.19                    | 2721                      | 35.93                         |
|          | 2           | Dacite       | 34.39                | 34.65           | 0.16                    | 2992                      | 29.66                         |
| BGC09-02 | 3           | Rhyolite     | 58.67                | 58.97           | 0.07                    | 2753                      | 97.03                         |
|          | 4           | Rhyolite     | 73.65                | 73.97           | 0.12                    | 2748                      | 82.64                         |
|          | 5           | Rhyolite     | 38.60                | 38.90           | 0.05                    | 2759                      | 95.99                         |
|          | 1           | Dacite       | 8.22                 | 8.50            | 0.08                    | 2956                      | 201.63                        |
| BGC09-03 | 2           | Dacite       | 18.25                | 18.50           | 0.06                    | 3932                      | 107.22                        |
|          | 3           | Quartz       | 15.72                | 15.95           | 0.13                    | 2646                      | 229.56                        |

#### Table 3 Results of the Uniaxial Compression Test

### 2.3. Geophysical Survey

The objective of the geophysical survey was to map the underlying soil stratigraphy and depth to bedrock between boreholes and under the Kootenay River along the proposed HDD path.

Seismic refraction surveying was used to map the depth to the river bottom and the geological conditions below both rivers and between boreholes along the east shore as recommended by the Geophysical contractor, Frontier Geophysics. Seismic refraction delineates the underlying geology by creating a sound burst near the surface, then recording the echo of the burst after it has bounced off a geological boundary and returned to surface. The echoes occur at either rock or sediment boundaries if there is a significant difference between seismic impedance, which is the product of the density of the unit and the speed of

sound in the material, across the boundary. The depth to geological contacts and thickness of the underlying units can then be determined by multiplying half the elapsed travel-time between the burst and return of the echo with the travel speed of the wave in the subsurface.

The seismic refraction survey along the east shore of the Kootenay River is fairly good at differentiating the underlying coarser grained sands, gravels, and cobbles from the overlying finer grained silts and sandy silts. Also, the depth to the bedrock contact is consistent with the depths acquired from the boreholes.

Under the Kootenay River, the seismic refraction survey did not differentiate materials with significantly different seismic impedance. Correlations can be made based on the seismic velocities encountered under the river and comparing them to the velocities of materials found in the boreholes on the east shore and west shore. Based on correlations between seismic velocities, the material under the river likely consists of saturated coarser grained sands, gravels, and cobbles. Addition borehole drilling in the river could confirm the underlying material and provide a more accurate depth to bedrock.

The seismic refraction survey along the west shore of the Kootenay River did not distinguish any significant changes in the underlying soil stratigraphy at depth. The seismic survey does show the stratigraphy consists of finer grained materials underlain by denser coarser grained materials. The coarser grained material probably consists of the interbedded sands and gravels found in boreholes BGC06-02 and BGC06-03.

The geophysics report is provided in Appendix IV. Seismic interpretations over both the land and water portion of the Kootenay River crossing are shown in Drawing 2 found in Appendix I.

## 2.4. Stratigraphy

The eastern side of the Kootenay River, based on data from the boreholes and the geophysics, consists generally of a surficial layer of silts and sandy silts. The silts range in density from soft to firm and appear to be greater in thickness towards the southern extent of the proposed HDD crossing along the east shore. These silts overlie denser, coarser grained fluvial sediments consisting of interbedded gravels and well graded sands and gravels ranging in thickness of up to 4 m. These gravels units are dense to very dense and there was evidence of cobbles and small boulders up to 300 mm in diameter. Compact to dense sand and gravels were often found below the gravel layer and on top of the underlying bedrock. The bedrock along the eastern side of the Kootenay River mainly consists of a metamorphosed Rhyolite with several volcanic Dacite dikes occurring in the upper portion of drill holes BGC09-01 and BGC09-02. No significant faults or fault zones were encountered during drilling, however, several small localized faults were observed. On the east slope, the phreatic surface (groundwater) was encountered in boreholes BGC09-01 and BGC09-02 and follows the topography, becoming increasingly shallow in the direction towards the river, ranging from a depth of 4.6 m at the second borehole to artesian conditions at the lowest.

Stratigraphy below the Kootenay River was determined through geophysical data. The subsurface most likely consists of two underlying units: a surficial layer of interbedded gravels, cobbles, and well graded sands similar to that found along the western shore, and a layer of denser well graded sand and gravel comparable to the material found at the bottom of boreholes BGC09-01. The contact between these two units was inferred and cannot be accurately delineated with the seismic data. The bedrock under the river dips to the west with the depth to bedrock on the east shore at approximately 45 m and along the west shore at 75 m. The maximum depth to bedrock below the river appears to be approximately 85 m.

The western side of the Kootenay River, based on the drilling from the 2006 program, consists of a surficial layer of sand and cobbles that is underlain by alternating layers of sandy gravel of varying cobble and boulder contents, and sands of varying gravel contents. Bedrock was not encountered in the 2006 drilling program, but the recent seismic refraction data indicates that bedrock is approximately 75 m below ground surface.

Drawing 2 represents the interpreted lithological cross section along section line A shown in Drawing 1 and is based on borehole logs, geophysical information and surface outcrops.

## 3.0 DISCUSSION & RECOMMENDATIONS

Based on the geotechnical information collected, the area of the proposed HDD crossing contains loose silts underlain by dense, well graded sands, gravels, and cobbles. These soils are likely channel and overbank deposits from the Kootenay River and extend down to the bedrock at approximately 45 m along the east shore and 75 m along the west shore of the Kootenay River with some overlying colluvium deposits on the east hillside. Should the decision be made to conduct an entry or exit of the HDD through the underlying dense gravels and sands, conditions could be encountered resulting in difficult drilling including inadequate wall support and excessive scour could occur. Difficult drilling conditions could be alleviated by placing a large diameter casing through these units to the underlying bedrock or dense strata.

The underlying bedrock found along the eastern shore of the proposed HDD route consists of predominately metamorphosed volcanic Rhyolite and volcanic Dacite dikes. The rock is strong with an average compressive strength ranging from approximately 80 to 230 MPa and competent with RQD values ranging from 65 to 100 % with good recovery. Several small 0.1 to 0.3 m fault zones were observed, however, no major fault zones were present at the drilled locations.

The results from the geophysics indicate that the underlying bedrock is relatively deep (60 - 75 m) along the west shore and under the Kootenay River. As such, the proposed HDD route, as provided by Terasen, would pass through the underlying soil and would likely encounter bedrock at approximately the eastern shore of the Kootenay River. Although shallow drilling has been conducted on the western side of the Kootenay River, no drilling has occurred along the center of the channel, and therefore the stratigraphy in this region is based on geophysical information where no confirmatory samples have been collected and from boreholes near to both shorelines. Further subsurface investigations could be considered beneficial to characterizing the materials at the depth of the proposed HDD crossing under the river, should Terasen so wish to delineate more accurately the materials along the borepath at this point.

The presence of a relatively shallow water table in the boreholes at the entry and exit together with some seams of sand has the potential for borehole instability, however, this can be overcome by advancing casing until competent ground conditions are encountered or with other borehole stabilizing measures.

## 4.0 CLOSURE

We trust the above satisfies your requirements at this time and provides adequate details in support of conducting an HDD at this site. Should you have any questions or comments regarding this report, please do not hesitate to contact us.

Yours sincerely,

BGC ENGINEERING INC. per:

Michael Beaupre, E.I.T. Geological Engineer Dr. Alex Baumgard, P.Eng, P.Geo Senior Geotechnical/Environmental Engineer

## REFERENCES

BGC 2008. Terasen Gas Inc. Geotechnical Feasibility Study For Horizontal Directional Drilling Kootenay River Crossing, April 18, 2008.

CFEM, 2006. Canadian Foundation Engineering Manual, Fourth Edition. Canadian Geotechnical Society, 488 p.

# APPENDIX I PHOTOGRAPHS & DRAWINGS

N:\BGC\Projects\0093 Terasen\076 - Castlegar Shoreacres HDD 2009\05 - Reporting\Shoreacres\_HDD\_final.doc

**BGC ENGINEERING INC.** 



Photograph 1 Looking north at the existing Terasen RoW, proposed HDD alignment, and along drilling locations of holes BGC09-01, BGC09-02, and BGC09-03.



Photograph 2 Looking upstream and to the north east from the western shore of the Kootenay River at the proposed HDD alignment.

N:\BGC\Projects\0093 Terasen\076 - Castlegar Shoreacres HDD 2009\05 - Reporting\Shoreacres\_HDD\_final.doc

**BGC ENGINEERING INC.** 



Projects\0093 BC Gas\076\Workspace\Figures\Shoreacres Kootney HDD Section A



DWG TO BE READ WITH BGC REPORT TITLED "SHOREACRES HDD GEOTECHNICAL INVESTIGATION" DATED DEC 2009

| BIGIC AN APPLIED EARTH SCIENCES COMPANY | CRC          | DSS SECTION A |       |
|-----------------------------------------|--------------|---------------|-------|
| ит: 🔿                                   | PROJECT No.: | DWG No.:      | REV.: |
| Terasen                                 | 0093-076     | 2             | A     |

# APPENDIX II BOREHOLE LOGS

N:\BGC\Projects\0093 Terasen\076 - Castlegar Shoreacres HDD 2009\05 - Reporting\Shoreacres\_HDD\_final.doc

**BGC ENGINEERING INC.** 

| Pro<br>Ge                              | oject:<br>otecl                                   | Sho<br>Sho                                     | oreac<br>al Inv                           | res HL<br>/estiga                                        | tion DRILL HOLE #                                                                                                                                                                                                                                                                                                                                 | <b>DH-BGCO</b><br>res East Approach                                      | 9-01               |                     |                      |                     |                                                                 | Pro                                                                                 | ject N                                               | <b>F</b><br>I <b>o.</b> : 0                                                  | <b>Page</b> 1<br>093-07                                       | <b>of</b> 9<br>'6                                                           |
|----------------------------------------|---------------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------|---------------------|----------------------|---------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|
| Sui<br>Co-<br>Gro<br>Dat<br>Dip<br>Dir | rvey l<br>ordir<br>ound<br>tum :<br>(deg<br>ectio | Meth<br>nates<br>Elev<br>UTM<br>grees<br>n : 0 | od :<br>s (m)<br>atior<br>1 NAI<br>s froi | Handh<br>: 462,2<br>n <i>(m)</i> :<br>D 83, Z<br>m horiz | eld GPS         Drill Designation :           233.E, 5,474,261.N         Drilling Contractor           468.0         Drill Method : Mud           one 11         Core : HQ           rontal) : 90         Fluid : Polymer/Muc           Casing : PQ         Casing                                                                                | Fraste MD-XL<br>: Geotech Drilling<br>rotary<br>sed To (m) : 29.87       | 7                  |                     |                      |                     | Start Da<br>Finish I<br>Final D<br>Depth t<br>Loggec<br>Review  | ate: 19<br>Date: 23<br>epth of<br>o Top o<br>I by : M<br>ed by :                    | Sep (<br>3 Sep<br>5 Hole<br>of Roo<br>IMB<br>AJB     | )9<br>09<br>(m):<br>ck (m                                                    | : 76.3<br>) : 29.6                                            | 60                                                                          |
| · Depth (m)                            | Sample Type                                       | Sample No.                                     | Weathering Grade                          | Symbol                                                   | Lithologic Description                                                                                                                                                                                                                                                                                                                            |                                                                          | Instrument Details | SPT Blows per 150mm | SPT-T Friction (kPa) | DCT Blows per 300mm | VANE<br>PEAK<br>REMOLI<br>Hydra<br>Conducti<br>10 <sup>.8</sup> | 40<br><u>FIELD</u><br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→<br>→ | Su -<br>80<br>LAB<br>0<br><br>10 <sup>-2</sup><br>80 | kPa<br>120<br>▲<br>△<br>—<br>—<br>Moistu<br>W <sub>p</sub> %<br>×<br>—<br>20 | ) 1<br>UC/2<br>Pocke<br>DCT (t<br>SPT (t<br>ww<br>o<br>40 (t) | 50<br>.: Pen /2<br>lows/300mr<br>lows/300mr<br>tt & SPT<br>Wi<br>><br>50 80 |
| - 1<br>- 2                             |                                                   |                                                |                                           |                                                          | SAND (SP) and SILT (ML) - fine to medium, trace<br>sub-angular gravels, poorly graded, loose to compa<br>maximum particle size, sub-rounded, brown, odour<br>structure, no cementation<br>SILT (ML) and SAND (SP) - fine sand, some fine t<br>gravels, low plasticity, firm, light brown, odourless,<br>structure, no cementation, slow dilatency | fine to medium<br>act, 10 mm<br>less, moist, no<br>o medium<br>moist, no |                    |                     |                      |                     |                                                                 |                                                                                     |                                                      |                                                                              |                                                               |                                                                             |
| · 3<br>- 4<br>- 5                      |                                                   |                                                |                                           |                                                          | SAND (SM) - fine, silty, poorly graded, loose to cor<br>odourless, moist, no structure, no cementation                                                                                                                                                                                                                                            | npact, brown,<br>∑                                                       |                    |                     |                      |                     |                                                                 |                                                                                     |                                                      |                                                                              |                                                               |                                                                             |
| · 7<br>· 8                             |                                                   |                                                |                                           |                                                          | 8.1 m - Orange mottling in cuttings.<br>SILT (ML) - trace fine sand, trace clay, low plastici<br>grey, odourless, moist, no structure, no cementatic<br>mottling in cuttings<br>8.8 m - Silt becomes stiff and fine sand disappears                                                                                                               | ty, firm to stiff,<br>n, trace orange<br>s.                              |                    |                     |                      |                     |                                                                 |                                                                                     |                                                      |                                                                              |                                                               |                                                                             |
| -10-                                   | •                                                 | •                                              | •                                         |                                                          | (Continued on next page)                                                                                                                                                                                                                                                                                                                          |                                                                          |                    | •                   | •                    | •                   |                                                                 |                                                                                     | •                                                    |                                                                              |                                                               |                                                                             |
| B                                      | GC                                                |                                                | BG(<br>N APP                              |                                                          | IGINEERING INC.                                                                                                                                                                                                                                                                                                                                   | Client: Tera                                                             | asen G             | Bas                 |                      |                     |                                                                 |                                                                                     |                                                      |                                                                              |                                                               |                                                                             |

| Pro<br>Ge                               | oject:<br>oteci                                  | : Shc<br>hnica                                 | oreac<br>al Inv                           | res H<br>restig                                      | DD DRILL HOL<br>ation Location : She                                                                                                                                                                                                                       | E # DH-BGC09                                                                                  | 9-01               |                     |                      |                     |                                                                                | F                                                                     | Project                                                                              | <b>No.</b> : (               | <b>Page</b> 2<br>0093-0                                           | <b>of</b> 9<br>76                                        |
|-----------------------------------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|---------------------|----------------------|---------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|
| Sur<br>Co-<br>Gro<br>Dat<br>Dip<br>Dire | vey l<br>ordii<br>ound<br>tum :<br>(deg<br>ectio | Meth<br>nates<br>Elev<br>UTM<br>grees<br>n : 0 | od :<br>s (m)<br>ation<br>1 NAE<br>s fron | Handl<br>: 462<br>( <i>m</i> ) :<br>0 83, 7<br>n hor | neld GPS         Drill Designat           ,233.E, 5,474,261.N         Drilling Contr           : 468.0         Drill Method :           Zone 11         Core : HQ           izontal) : 90         Fluid : Polyme           Casing : PQ         Casing : PQ | ion : Fraste MD-XL<br>actor : Geotech Drilling<br>Mud rotary<br>r/Mud<br>Cased To (m) : 29.87 |                    |                     |                      |                     | Start D<br>Finish<br>Final D<br>Depth<br>Logge<br>Reviev                       | ate :<br>Date<br>Depth<br>to To<br>d by<br>ved b                      | 19 Sep<br>23 Sep<br>of Hole<br>p of Ro<br>: MMB<br>y : AJB                           | 09<br>09<br>e (m):<br>eck (n | r : 76.3<br>n) : 29.                                              | 60                                                       |
| 5 Depth (m)                             | Sample Type                                      | Sample No.                                     | Weathering Grade                          | Symbol                                               | Lithologic Descrip                                                                                                                                                                                                                                         | tion                                                                                          | Instrument Details | SPT Blows per 150mm | SPT-T Friction (kPa) | DCT Blows per 300mm | VANE<br>PEAK<br>REMOL<br>7<br>Hydr<br>Conduc<br>10 <sup>-8</sup><br>Core<br>20 | 40<br>FIE<br>D & Finallic<br>tivity (m<br>10 <sup>-6</sup> 1<br>Recov | Su<br>80<br>D LAB<br>mes<br>sec)<br>0 <sup>-4</sup> 10 <sup>-2</sup><br>ery<br>60 80 | - kPa<br>12                  | UC/2<br>Pocke<br>DCT (<br>SPT (<br>ture Conte<br>W%<br>0-<br>0 40 | 160<br>1<br>blows/300mm)<br>blows/300mm)<br>nt & SPT<br> |
| -11<br>-12<br>-13                       |                                                  |                                                |                                           |                                                      | SILT (ML) - trace fine sand, trace clay, low p<br>grey, odourless, moist, no structure, no ceme<br>mottling in cuttings                                                                                                                                    | lasticity, firm to stiff,<br>entation, trace orange                                           |                    |                     |                      |                     |                                                                                |                                                                       |                                                                                      |                              |                                                                   |                                                          |
| -14                                     |                                                  |                                                |                                           |                                                      | 13.5 m - Becomes trace to some clay.                                                                                                                                                                                                                       |                                                                                               |                    |                     |                      |                     |                                                                                |                                                                       |                                                                                      |                              |                                                                   |                                                          |
| -16<br>-17<br>-18                       |                                                  |                                                |                                           |                                                      | 15.8 m - 10 cm wide lens of medium to coars                                                                                                                                                                                                                | e sand.                                                                                       |                    |                     |                      |                     |                                                                                |                                                                       |                                                                                      |                              |                                                                   |                                                          |
| -19                                     |                                                  |                                                |                                           |                                                      |                                                                                                                                                                                                                                                            |                                                                                               |                    |                     |                      |                     |                                                                                |                                                                       |                                                                                      |                              |                                                                   |                                                          |
|                                         |                                                  | 1                                              |                                           |                                                      | (Continued on next                                                                                                                                                                                                                                         | page)                                                                                         |                    |                     |                      |                     |                                                                                |                                                                       |                                                                                      |                              |                                                                   |                                                          |
| B                                       |                                                  |                                                | BG(<br>N APP                              |                                                      | NGINEERING INC.<br>arth sciences company                                                                                                                                                                                                                   | Client: Tera                                                                                  | isen G             | as                  |                      |                     |                                                                                |                                                                       |                                                                                      |                              |                                                                   |                                                          |

| Pro<br>Geo                                      | ject:<br>otecł                                   | Sho<br>hnica                                   | oreac<br>al Inv                             | res H<br>restig                                      | DD DRILL HOLD<br>ation Location : Shor                                                                                                                                                                                                                             | E # DH-BGC09<br>eacres East Approach                                                            | 9-01               |                    |                      |                    |                                                                   | F                                                                                     | Project                                                                     | t <b>No.</b> :                                                                                                                         | <b>Page</b><br>0093-                             | <b>9</b> 3 <b>of</b><br>-076                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------|--------------------|----------------------|--------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sur<br>Co-c<br>Gro<br>Dat<br>Dat<br>Dip<br>Dire | vey I<br>ordin<br>und I<br>um :<br>(deg<br>ctioi | Weth<br>nates<br>Elev<br>UTN<br>prees<br>n : 0 | od :  <br>s (m)<br>ation<br>  NAE<br>s fron | Handh<br>: 462<br>( <i>m</i> ) :<br>0 83, 2<br>n hor | neld GPS         Drill Designation           ,233.E, 5,474,261.N         Drilling Contract           468.0         Drill Method : N           Zone 11         Core : HQ           izontal) : 90         Fluid : Polymer/           Casing : PQ         Casing : PQ | n : Fraste MD-XL<br>ctor : Geotech Drilling<br>lud rotary<br>Mud<br><b>Cased To (m)</b> : 29.87 | ,                  |                    |                      |                    | Start L<br>Finish<br>Final L<br>Depth<br>Logge<br>Reviev          | Date :<br>Date<br>Depth<br>to To<br>d by<br>ved b                                     | 19 Se<br>23 Se<br>of Ho<br>op of F<br>: MMB<br>y : AJ                       | p 09<br>ep 09<br>e <b>le (m)</b><br>Rock (i<br>3                                                                                       | <b>:</b> :76<br><b>m)</b> :2                     | .3<br>9.60                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                 |                                                  |                                                |                                             |                                                      |                                                                                                                                                                                                                                                                    |                                                                                                 |                    | mm                 |                      | шш                 |                                                                   | 40                                                                                    | S<br>80                                                                     | u - kPa<br>1                                                                                                                           | 20                                               | 160                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Depth (m)                                       | Sample Type                                      | Sample No.                                     | Weathering Grade                            | Symbol                                               | Lithologic Descriptio                                                                                                                                                                                                                                              | n                                                                                               | Instrument Details | SPT Blows per 150r | SPT-T Friction (kPa) | DCT Blows per 300r | VANE<br>PEAK<br>REMOI<br>Conduc<br>10 <sup>-8</sup><br>Core<br>20 | FIE<br>FIE<br>■<br>-D <<br>• % Fi<br>aulic (m<br>10 <sup>6</sup> 1<br>• Recov<br>40 0 | LD LAE<br>nes<br>/sec)<br>0 <sup>-4</sup> 10 <sup>-2</sup><br>very<br>60 80 | B<br>A<br>A<br>A<br>C<br>C<br>C<br>Mois<br>W <sub>P</sub> %<br>X<br>A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | UC<br>Por<br>DC<br>DC<br>DC<br>SP<br>W<br>0<br>0 | C/2<br>cket Pe<br>CT (blows/2<br>T (blows/2<br>ontent &<br>V%<br>O — — | 300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi<br>300mi |
| 20-<br>21<br>22<br>23<br>23<br>24               |                                                  |                                                |                                             |                                                      | SILT (ML) - trace fine sand, trace clay, low pla<br>grey, odourless, moist, no structure, no cemen<br>mottling in cuttings                                                                                                                                         | sticity, firm to stiff,<br>tation, trace orange                                                 |                    |                    |                      |                    |                                                                   |                                                                                       |                                                                             |                                                                                                                                        |                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26                                              |                                                  |                                                |                                             |                                                      | GRAVEL (GW) - fine to coarse, some medium<br>trace boulders, dense, greater than 150 mm m<br>size, angular, wet, dark grey, odourless, no str<br>cementation (particle size interpreted through o                                                                  | to large cobbles,<br>aximum particle<br>ucture, no<br>drilling)                                 |                    |                    |                      |                    |                                                                   |                                                                                       |                                                                             |                                                                                                                                        |                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 28                                              |                                                  |                                                |                                             |                                                      | SAND (SW) - fine to coarse, trace silt, trace fir<br>graded, very dense, 12 mm maximum particle<br>angular, light brown, odourless, moist, no struc<br>cementation                                                                                                 | e gravels, well<br>size, sub-angular to<br>cture, no                                            |                    |                    |                      |                    |                                                                   |                                                                                       |                                                                             |                                                                                                                                        |                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                 |                                                  |                                                |                                             | ·*·*·*·                                              | Rock encountered at 29.60 m d                                                                                                                                                                                                                                      | epth.                                                                                           |                    |                    |                      |                    |                                                                   |                                                                                       |                                                                             |                                                                                                                                        |                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Pro<br>Ge                               | oject:<br>otecl                                   | Sho<br>hnica                                   | reacre<br>al Inve                                   | s HDD<br>stigatio                                                  | DRILL HOLE                                                                                                                                                                                                                                  | # DH-BGC09-01<br>acres East Approach                                                          |            |                       |                                                          | P                                                   | rojec                                               | t No.                                                     | <b>Pa</b>             | <b>ge</b> 4 <b>c</b><br>93-076 | o <b>f</b> 9<br>6 |
|-----------------------------------------|---------------------------------------------------|------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------|-----------------------|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-----------------------|--------------------------------|-------------------|
| Sur<br>Co-<br>Gro<br>Dat<br>Dip<br>Dire | vey l<br>ordir<br>ound<br>tum :<br>(deg<br>ection | Meth<br>nates<br>Elev<br>UTM<br>grees<br>n : 0 | od :Ha<br>s (m) :<br>ation (<br>I NAD 8<br>s from 1 | ndheld<br>462,233<br><b>m)</b> : 466<br>33, Zono<br><b>horizor</b> | GPS         Drill Designation           3.E, 5,474,261.N         Drilling Contract           8.0         Drill Method : Mic           e 11         Core : HQ           ntal) : 90         Fluid : Polymer/N           Casing : PQ         O | n : Fraste MD-XL<br>tor : Geotech Drilling<br>ud rotary<br>fud<br><b>Cased To (m)</b> : 29.87 |            | S<br>F<br>D<br>L<br>F | Start E<br>Finish<br>Final E<br>Depth<br>.ogge<br>Reviev | ate :<br>Date:<br>Depth<br>to To<br>d by :<br>ved b | 19 Se<br>23 S<br>of He<br>p of I<br>: MME<br>y : A. | ep 09<br>ep 09<br><b>ole</b> : 7<br><b>Rock</b><br>3<br>B | 76.3<br>( <b>m)</b> : | 29.6                           | 0                 |
|                                         |                                                   |                                                |                                                     |                                                                    |                                                                                                                                                                                                                                             |                                                                                               |            | F<br>Co               | lydrauli<br>onductiv<br>m/sec                            | ity                                                 |                                                     |                                                           | UCS                   | - MPa                          |                   |
|                                         | be                                                | Ö                                              | g Grade                                             |                                                                    | Lithologic Descriptio                                                                                                                                                                                                                       | n                                                                                             | Details    | 10 <sup>-</sup>       | <sup>8</sup> 10 <sup>-6</sup>                            | 10 <sup>-4</sup> 10                                 | ) <sup>-2</sup>                                     | 50                                                        | 100                   | 150<br><br>oint Lo             | 200<br>I<br>ad    |
| Depth (m)                               | Sample Ty                                         | Sample No                                      | Weatherin                                           | Symbol                                                             |                                                                                                                                                                                                                                             |                                                                                               | Instrument | Re<br>20              | RQD %                                                    | %`<br><br>60 _ 8                                    |                                                     | ¢<br>20                                                   | р т<br>R<br>40        | MR _                           | 80                |
| $-20^{-1}$                              |                                                   |                                                |                                                     | <pre>&gt;&gt; &gt;&gt; &gt;&gt; &gt;&gt; </pre>                    | 0 to 29.60 m - See DH-BGC0<br>METAMORPHOSED VOLCANICS (Rhyolite<br>grained, equigranular, strong (R4), slightly we<br>(Continued on next pay                                                                                                | )9-01 soil log.                                                                               |            |                       |                                                          |                                                     |                                                     |                                                           |                       |                                |                   |
| В                                       | G                                                 |                                                |                                                     |                                                                    | SINEERING INC.<br>I sciences company                                                                                                                                                                                                        | Client: Terasen Gas                                                                           | 8          |                       |                                                          |                                                     |                                                     |                                                           |                       |                                |                   |

| Curvey<br>Co-ordi<br>Ground<br>Datum :<br>Dip (deg<br>Directio | Meth<br>nate<br>Elev<br>UTN<br>grees<br>on : 0 | nod :Ha<br>s (m) :<br>vation (<br>M NAD<br>s from | Indheld<br>462,233<br>( <b>m)</b> : 46<br>83, Zoni<br><b>horizor</b> | GPSDrill Designation : Fraste MD-XL3.E, 5,474,261.NDrilling Contractor : Geotech Drilling3.0Drill Method : Mud rotarye 11Core : HQntal) : 90Fluid : Polymer/MudCasing : PQCased To (m) : 29.87                                                                                                                                                                                                                                                                    |                    | Start Date : 19<br>Finish Date : 2<br>Final Depth o<br>Depth to Top<br>Logged by : N<br>Reviewed by :                                          | Sep 09<br>3 Sep 09<br>f <b>Hole</b> :<br>of <b>Rock</b><br>IMB<br>AJB | 9<br>76.3<br>( <b>m)</b> :              | 29.6(                                           | )         |
|----------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|-----------|
| uepm (m)<br>Sample Type                                        | Sample No.                                     | Weathering Grade                                  | Symbol                                                               | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                            | Instrument Details | Hydraulic<br>Conductivity<br>10 <sup>-8</sup> 10 <sup>-6</sup> 10 <sup>-4</sup> 10 <sup>-2</sup><br>Core<br>Recovery %<br>RQD %<br>20 40 60 80 | 50                                                                    | UCS<br>100<br>■ Pc<br>\$ Tr<br>RM<br>40 | - MPa<br>150<br>Joint Loa<br>iaxial<br>MR<br>60 | 200<br>id |
| i0<br>i1<br>i2                                                 | 1                                              |                                                   |                                                                      | with quartz and calcite veins to a maximum thickness of 5 mm, RQD = 70<br>- 80%<br>30.75 m - 5 mm wide fault with clay and calcite fault gouge.                                                                                                                                                                                                                                                                                                                   |                    |                                                                                                                                                |                                                                       |                                         |                                                 |           |
| 3<br>4                                                         |                                                |                                                   |                                                                      | VOLCANICS (Dacite) - Greenish grey, fine to medium grained, bimodal;<br>medium grained mafics minerals in a fine grained matrix, strong (R4),<br>fresh, with slight chlorite alteration, RQD = 70 - 90%<br>33.05 m - 0.15 m thick metamorphosed volcanic dike.<br>METAMORPHOSED VOLCANICS (Rhyolite) - Dark pinkish grey, fine<br>grained, slightly foliated, equigranular, strong (R4), fresh, potassic<br>alteration with quartz and calcite stockworks veining | -                  |                                                                                                                                                |                                                                       |                                         |                                                 |           |
| 6<br>7 <u></u>                                                 | 2                                              |                                                   |                                                                      | VOLCANICS (Dacite) - Greenish grey, fine to medium grained, bimodal;<br>medium grained mafics minerals in a fine grained matrix, strong (R4),<br>fresh, slight chlorite alteration with trace quartz veins, RQD = 70 - 85%<br>Two major joint sets with beta angles of 30 and 65 degrees                                                                                                                                                                          | -                  |                                                                                                                                                |                                                                       |                                         |                                                 |           |
| .9                                                             |                                                |                                                   |                                                                      | 38.45 m - 0.55 m thick metamorphosed volcanic dike<br>METAMORPHOSED VOLCANICS (Rhyolite) - Dark pinkish grey/black.                                                                                                                                                                                                                                                                                                                                               | -                  |                                                                                                                                                |                                                                       |                                         |                                                 |           |

| Pro<br>Ge                               | oject:<br>otecl                                  | : Sho<br>hnica                                 | oreacre<br>al Inve                                | s HDD<br>stigatio                                                  | DRILL HOLE                                                                                                                                                                                                          | # DH-BGC09-01<br>cres East Approach                                              |                    | Proje                                                                                                                                                       | <b>Page</b> 6 of 9<br>ct No. : 0093-076                                     |
|-----------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Sur<br>Co-<br>Gro<br>Dat<br>Dip<br>Dire | vey l<br>ordin<br>ound<br>tum :<br>(deg<br>ectio | Meth<br>nates<br>Elev<br>UTM<br>grees<br>n : 0 | od :Ha<br>s (m) :<br>ation (<br>I NAD :<br>s from | ndheld<br>462,233<br><b>m)</b> : 466<br>33, Zone<br><b>horizor</b> | GPS         Drill Designation           3.E, 5,474,261.N         Drilling Contractor           8.0         Drill Method : Muter           e 11         Core : HQ           ntal) : 90         Fluid : Polymer/Mater | : Fraste MD-XL<br>or : Geotech Drilling<br>d rotary<br>ud<br>ased To (m) : 29.87 |                    | Start Date : 19 S<br>Finish Date: 23 S<br>Final Depth of H<br>Depth to Top of<br>Logged by : MM<br>Reviewed by : A                                          | ep 09<br>Sep 09<br>Iole : 76.3<br><i>Rock (m)</i> : 29.60<br>B<br>JB        |
| Depth (m)                               | Sample Type                                      | Sample No.                                     | Weathering Grade                                  | Symbol                                                             | Lithologic Description                                                                                                                                                                                              |                                                                                  | Instrument Details | Hydraulic<br>Conductivity<br>m/sec<br>10 <sup>-8</sup> 10 <sup>-6</sup> 10 <sup>-4</sup> 10 <sup>-2</sup><br><br>Core<br>Recovery %<br>RQD %<br>20 40 60 80 | UCS - MPa<br>50 100 150 200<br>Point Load<br>Triaxial<br>RMR<br>20 40 60 80 |
| -40-                                    |                                                  |                                                |                                                   |                                                                    | fine grained, banded, equigranular, strong to v<br>potassic alteration with visible flow banding in<br>RQD = 60 - 80%                                                                                               | ery strong (R4 - R5), fresh,<br>quartz stockworks veins,                         |                    |                                                                                                                                                             |                                                                             |
| -42                                     |                                                  |                                                |                                                   |                                                                    | 41.42 m - Fault with clay fault gouge. Fault ha degrees.                                                                                                                                                            | s an alpha angle of 55                                                           |                    |                                                                                                                                                             |                                                                             |
| -43                                     |                                                  |                                                |                                                   |                                                                    | 43.1 m - Moved casing down 0.3 m causing a recovery.                                                                                                                                                                | oproximately 0.3 m of lost                                                       |                    |                                                                                                                                                             |                                                                             |
| -45<br>-46                              |                                                  |                                                |                                                   | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                             | 43.98 m - Primary joint set with an alpha angle<br>of approximately 0.65 m. Secondary joint set v<br>degrees and spacing of 0.45 m                                                                                  | e of 55 degrees and spacing<br>vith an alpha angle of 25                         |                    |                                                                                                                                                             |                                                                             |
| 48                                      |                                                  |                                                |                                                   | **************************************                             | 47.55 m - Decrease in the quartz stockworks                                                                                                                                                                         | <i>r</i> einlets.                                                                |                    |                                                                                                                                                             |                                                                             |
| ·50-                                    |                                                  | 1                                              | 1                                                 | 1 × × ×                                                            | (Continued on next pag                                                                                                                                                                                              | e)                                                                               |                    |                                                                                                                                                             |                                                                             |
| B                                       | G                                                |                                                | SGC                                               |                                                                    | SINEERING INC.<br>I SCIENCES COMPANY                                                                                                                                                                                | Client: Terasen Gas                                                              |                    |                                                                                                                                                             |                                                                             |

| C O Octini (III)<br>Sample Type<br>1<br>2<br>2<br>3 | c Sample No. | Weathering Grade | <pre>&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&gt;Symbol Symbol S</pre> | 49.89 m - Fault with chlorite and clay fault gouge. We iron bearing minerals.<br>50.25 m - Decrease in the number of joints.                                            | eathering (rusting) of                                        | Instrument Details | Hydra<br>Condu<br>m/s<br>10 <sup>-8</sup> 10<br>Coi<br>Recove<br>RQE<br>20 4 | nulic<br>ctivity<br>ec<br>p <sup>r6</sup> 10 <sup>-4</sup><br><br>re<br>ery %<br><br>0 %<br>0 60 |    | 50<br>50<br>- | UCS<br>100<br>■ P<br>> T<br>R | 5 - MPa<br>150<br>voint Lo<br>riaxial | 200<br> |
|-----------------------------------------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----|---------------|-------------------------------|---------------------------------------|---------|
| 2 Concepti (iii)                                    | c Sample No. | Weathering G     | <pre>&lt;&lt; &lt; &lt;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lithologic Description<br>49.89 m - Fault with chlorite and clay fault gouge. We<br>iron bearing minerals.<br>50.25 m - Decrease in the number of joints.               | eathering (rusting) of                                        | Instrument Det     | Col<br>Recove<br>RQE<br>20 4                                                 | re –<br>ery % _<br>0 % _<br>0 60                                                                 |    | <             | ■ P<br>> T<br>R               | riaxial                               | ad      |
| 0<br><sup>(%)</sup><br>1<br>2<br>3                  | 3            |                  | <pre>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.89 m - Fault with chlorite and clay fault gouge. We iron bearing minerals.<br>50.25 m - Decrease in the number of joints.                                            | eathering (rusting) of                                        |                    |                                                                              |                                                                                                  | 80 | 20            | 40                            | 60                                    | ت<br>80 |
| 6                                                   |              |                  | x > x > x > x > x > x > x > x > x > x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.20 m - Fault with chlorite and clay fault gouge. Far<br>angle of approximately 55 degrees.                                                                           | ult has an alpha                                              |                    |                                                                              |                                                                                                  |    |               |                               |                                       |         |
| 8                                                   | 5            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VOLCANICS - Greenish grey, fine grained, equigrant<br>fresh, with chlorite alteration, RQD = 90 -100%                                                                   | ular, strong (R4),                                            |                    |                                                                              |                                                                                                  |    |               |                               |                                       |         |
| 9                                                   |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | METAMORPHOSED VOLCANICS - Dark pinkish gre<br>foliated, equigranular, strong (R4), fresh, potassic alto<br>stockworks veins and veinlets to a maximum size of 2<br>100% | ey, fine grained,<br>eration, with quartz<br>2 mm, RQD = 75 - |                    |                                                                              |                                                                                                  |    |               |                               |                                       |         |
| J                                                   |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Continued on next page)                                                                                                                                                |                                                               |                    |                                                                              |                                                                                                  |    |               |                               |                                       |         |

| Proj<br>Geo                                    | iect:<br>tech                                    | Sho<br>nnica                                 | reacre<br>al Inves                                  | s HDD<br>stigatio                                                  | DRILL HOLE                                                                                                                                                                                                                                 | # DH-BGC09-01<br>Icres East Approach                                                    |            |                             |                                                          | Pr                                                      | ojeci                                              | t No.                                   | <b>Pag</b><br>: 009   | <b>ge</b> 8 <b>d</b><br>3-07( | o <b>f</b> 9<br>6 |
|------------------------------------------------|--------------------------------------------------|----------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------|-----------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|-----------------------------------------|-----------------------|-------------------------------|-------------------|
| Surv<br>Co-o<br>Grou<br>Datu<br>Dip (<br>Direo | rey N<br>ordin<br>und I<br>im :<br>(deg<br>ctioi | Methonates<br>Eleva<br>UTM<br>prees<br>n : 0 | od :Ha<br>; (m) : -<br>ation (<br>  NAD {<br>; from | ndheld<br>462,233<br><b>m)</b> : 468<br>33, Zone<br><b>horizor</b> | GPS         Drill Designation           3.E, 5,474,261.N         Drilling Contract           8.0         Drill Method : Mu           e 11         Core : HQ           ntal) : 90         Fluid : Polymer/M           Casing : PQ         C | : Fraste MD-XL<br>or : Geotech Drilling<br>d rotary<br>ud<br><b>ased To (m)</b> : 29.87 |            | St<br>Fil<br>De<br>Lo<br>Re | art Da<br>nish I<br>nal Do<br>epth to<br>oggeo<br>eviewo | ate : 1<br>Date :<br>epth o<br>o Top<br>I by :<br>ed by | 9 Se<br>23 Se<br>of Ho<br>o of R<br>MMB<br>' : AJI | p 09<br>ep 09<br><b>ole</b> : 7<br>Rock | 76.3<br>( <b>m)</b> : | 29.6                          | 0                 |
|                                                |                                                  |                                              | le                                                  |                                                                    |                                                                                                                                                                                                                                            |                                                                                         | <u>s</u>   | Hy<br>Con<br>n              | draulic<br>ductivit<br>n/sec                             | y:                                                      | 2                                                  | 50                                      | UCS                   | - MPa                         |                   |
| (m                                             | e Type                                           | e No.                                        | ering Grac                                          | _                                                                  | Lithologic Description                                                                                                                                                                                                                     |                                                                                         | nent Detai | Rec                         | Core<br>overy %                                          | ۰ ان<br>ا                                               | ]                                                  | 50<br> <br>                             |                       | Dint Lo                       | <br>ad            |
| Depth (                                        | Sample                                           | Sample                                       | Weathe                                              | Symbo                                                              |                                                                                                                                                                                                                                            |                                                                                         | Instrum    | R<br>20                     | QD %                                                     | <br><br>50 80                                           |                                                    | 20                                      | RN<br>40              | /IR _<br>60                   | <br>              |
| 50                                             |                                                  |                                              |                                                     |                                                                    | METAMORPHOSED VOLCANICS - Dark pin<br>foliated, equigranular, strong (R4), fresh, pota<br>stockworks veins and veinlets to a maximum<br>100%                                                                                               | kish grey, fine grained,<br>ssic alteration, with quartz<br>size of 2 mm, RQD = 75 -    |            |                             |                                                          |                                                         |                                                    |                                         |                       |                               |                   |
| 2                                              |                                                  |                                              |                                                     |                                                                    | 61.70 m - 15 cm wide highly fracture zone.                                                                                                                                                                                                 |                                                                                         |            |                             |                                                          |                                                         |                                                    |                                         |                       |                               |                   |
| 3                                              |                                                  |                                              |                                                     |                                                                    | 63.35 m - 10 cm wide highly fracture zone.                                                                                                                                                                                                 |                                                                                         |            |                             |                                                          |                                                         |                                                    |                                         |                       |                               |                   |
| 5                                              |                                                  |                                              |                                                     | · · · · · · · · · · · · · · · · · · ·                              | 65.1 m - 10 cm wide highly fracture zone.                                                                                                                                                                                                  |                                                                                         |            |                             |                                                          |                                                         |                                                    |                                         |                       |                               |                   |
| 7                                              |                                                  |                                              |                                                     |                                                                    |                                                                                                                                                                                                                                            |                                                                                         |            |                             |                                                          |                                                         |                                                    |                                         |                       |                               |                   |
| 3<br>9                                         |                                                  |                                              |                                                     | *****************                                                  | 68.67 m - Trace quartz veins up to 10 mm.                                                                                                                                                                                                  |                                                                                         |            |                             |                                                          |                                                         |                                                    |                                         |                       |                               |                   |
| 0-                                             | _                                                |                                              | l                                                   | 1 * * *                                                            | (Continued on next pag                                                                                                                                                                                                                     | e)                                                                                      |            |                             | 1                                                        |                                                         |                                                    |                                         |                       | 1                             | <u> </u>          |
| 30                                             | GC                                               |                                              |                                                     |                                                                    | SINEERING INC.                                                                                                                                                                                                                             | Client: Terasen Gas                                                                     |            |                             |                                                          |                                                         |                                                    |                                         |                       |                               |                   |

| Pro<br>Ge                                                                                                           | oject:<br>otecl                                  | Sho<br>hnica                                   | reacre<br>al Inves                                | s HDD<br>stigatic                                                | DRILL HOLE # DH-BGC09-0<br>Location : Shoreacres East Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )1        |                    |                         |                                                                      |                                           | P                                        | roje                                        | ct N                                                 | <b>o.</b> : (                    | <b>Pag</b>                       | <b>e</b> 9 (<br>3-07) | o <b>f</b> 9<br>6 |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|-------------------------|----------------------------------------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------------------|----------------------------------|----------------------------------|-----------------------|-------------------|--|
| Sur<br>Co-<br>Gro<br>Dat<br>Dip<br>Dire                                                                             | vey l<br>ordir<br>ound<br>um :<br>(deg<br>ection | Weth<br>nates<br>Elev<br>UTN<br>prees<br>n : 0 | od :Ha<br>; (m) :<br>ation (<br>NAD 8<br>; from 1 | ndheld<br>462,233<br><b>m)</b> : 46<br>33, Zon<br><b>horizor</b> | GPSDrill Designation : Fraste MD-XL3.E, 5,474,261.NDrilling Contractor : Geotech Drilling8.0Drill Method : Mud rotarye 11Core : HQntal) : 90Fluid : Polymer/MudCasing : PQCased To (m) : 29.87                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                    | 2<br>  <br>  <br>  <br> | Start<br>Finis<br>Final<br>Depti<br>Logg<br>Revie                    | Dat<br>h Da<br>Dej<br>h to<br>ed l<br>ewe | te :<br>ate<br>pth<br>To<br>by :<br>d by | 19 S<br>23 S<br>of H<br>p of<br>MM<br>y : A | ep 0<br>Sep 0<br><b>ole</b><br><b>Roc</b><br>B<br>JB | 9<br>)9<br>: 76<br>: <b>k (n</b> | .3<br>n):2                       | 29.6                  | )                 |  |
| Depth (m)                                                                                                           | Sample Type                                      | Sample No.                                     | Weathering Grade                                  | Symbol                                                           | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Instrument Details | 10<br>10<br>12          | Hydrau<br>onduc<br>m/se<br>* 10 <sup>-</sup><br>Core<br>ecove<br>RQD | ulic<br>tivity<br>c<br>3 10<br>y %<br>y % | ·····<br>····<br>····                    | ) <sup>-2</sup>                             |                                                      | 0<br>50<br>♦                     | JCS -<br>100<br>Po<br>Tria<br>RM | MPa                   | 200<br>ad         |  |
| -70-<br>-71-<br>-71-<br>-72-<br>-72-<br>-73-<br>-73-<br>-74-<br>-74-<br>-75-<br>-77-<br>-75-<br>-77-<br>-77-<br>-77 |                                                  | 4                                              |                                                   |                                                                  | METAMORPHOSED VOLCANICS - Dark pinkish grey, fine grained,<br>foliated, equigranular, strong (R4), fresh, potassic alteration, with quar<br>stockworks veins and veinlets to a maximum size of 2 mm, RQD = 75<br>100%<br>71.00 m - Some quartz stockworks veins up to 8 mm.<br>End of Borehole @ 76.29 m<br>Notes:<br>1. Discontinued drilling as reached target depth.<br>2. Hole grouted and filled with bentonite following completion.<br>3. Approximate depth of water as interpreted through drilling: Sept. 24,<br>2009 - 5.2 m. On Sept. 25, 2009 well became artesianed.<br>4. Drill bit hardness: 9 - 11. | rtz<br>;- |                    |                         |                                                                      |                                           |                                          |                                             |                                                      |                                  |                                  |                       |                   |  |
| B                                                                                                                   | GC                                               |                                                | BGC                                               |                                                                  | SINEERING INC. Client: Terasen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Gas     |                    |                         |                                                                      |                                           |                                          |                                             |                                                      |                                  |                                  |                       |                   |  |

| Image: Section of the section of th | Pro<br>Ge<br>Sur<br>Co-<br>Gro<br>Dat<br>Dip<br>Dire | oject:<br>otecl<br>vey l<br>ordir<br>ound<br>tum :<br>(deg<br>ectio | : Sho<br>hnica<br>Meth<br>nates<br>Elev<br>UTN<br>grees<br>n : 0 | oreac<br>al Inv<br>od :<br>s (m)<br>ation<br>1 NAE<br>s from | res HL<br>restiga<br>Handhu<br>: 462,2<br>1 (m) : -<br>0 83, Z<br>n horiz | DD       DRILL HOLE         ation       Location : Shore         eld GPS       Drill Designation         296.E, 5,474,411.N       Drilling Contract         481.0       Drill Method : Mu         one 11       Core : HQ         zontal) : 90       Fluid : Polymer/M         Casing : PQ       Core                                                                                                                                                                                | <b># DH-BGCO</b><br>acres East Approach<br>: Fraste MD-XL<br><b>for</b> : Geotech Drilling<br>ud rotary<br>lud<br><b>Cased To (m)</b> : 15.20 | 9-02               |                       |                      |                     | Start Da<br>Finish I<br>Final D<br>Depth t<br>Loggec<br>Review                  | Project<br>ate: 25 Sc<br>Date: 30 S<br>epth of H<br>o Top of<br>I by: MM<br>ed by: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | et No. :<br>ep 09<br>ep 09<br>ole (m)<br>Rock (r<br>3<br>JB                                                        | Page 1<br>0093-07<br>: : 75.7<br>n) : 14.4                                 | <b>of</b> 9<br>76<br>49                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|----------------------|---------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 0       SiLT (CL-ML) - sandy fine to coarse, trace gravels, trace clay, low structure, no cementation, low dry strength, slow dilatency         1       1         -2       1         -3       2         -4       3         -5       3         -5       3         -6       -6         -7       -7         -8       4         -8       4         -8       4         -7       -7         -7       -7         -7       -7         -7       -7         -7       -7         -8       4         -8       -4         -7       -7         -7       -7         -7       -7         -8       -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o Depth (m)                                          | Sample Type                                                         | Sample No.                                                       | Weathering Grade                                             | Symbol                                                                    | Lithologic Descriptior                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                             | Instrument Details | SPT Blows per 150mm   | SPT-T Friction (kPa) | DCT Blows per 300mm | VANE<br>PEAK<br>REMOLI<br>Hydra<br>Conducti<br>10 <sup>-8</sup> 1<br>Core<br>20 | 40 80<br>FIELD ↓A<br>S Fines<br><sup>10</sup> | Su - kPa<br>1:<br>B<br>A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 20 1<br>UC/2<br>Pocke<br>DCT (c<br>SPT (c<br>ture Contec<br>W%<br>0 40 (c) | 60<br>I Pen /2<br>lows/300mm<br>klows/300mm<br>t & SPT<br>Wt<br>×<br>50 80 |
| -4       -4         -5       3         -5       3         -6       -6         -7       -6         -8       4         -8       4         -8       4         -9       GRAVEL (GW) and SAND (SW) - fine to coarse, some silt, well graded, dense, 20 mm maximum particle size, sub-angular, itarts cobles and boulders, trace silt, well graded, very dense to hard, greater than 200 mm maximum particle size, sub-angular, dark grey/brown, odourless, moist, no structure, no cementation (maximum particle size interpreted through drilling)         -6       6.1 m - Poor water recovery during drilling.         -7       -8         -8       4         -9       GRAVEL (GW) and SAND (SW) - fine to coarse, some silt, trace cobbles and boulders, well graded, dense to very dense.         -9       -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>- 2<br>- 3                                      | X                                                                   | 1                                                                |                                                              |                                                                           | SILT (CL-ML) - sandy fine to coarse, trace grave<br>plasticity, firm, medium sensitivity, grey, odourle<br>structure, no cementation, low dry strength, slov                                                                                                                                                                                                                                                                                                                        | els, trace clay, low<br>ss, moist, no<br>v dilatency                                                                                          |                    | 2<br>3<br>3<br>4<br>3 |                      |                     |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                  |                                                                            |                                                                            |
| <ul> <li>4</li> <li>8</li> <li>4</li> <li>8.22 m - Becomes some cobbles and boulders up to 300 mm maximum particle size and very dense. (maximum particle size interpreted through tricone drilling)</li> <li>9</li> <li>GRAVEL (GW) and SAND (SW) - fine to coarse, some silt, trace cobbles and boulders, well graded, dense to very dense, sub-angular grey odourless moist no structure no cementation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 4<br>- 5<br>- 6                                    |                                                                     | 3                                                                |                                                              |                                                                           | SAND (SW) and GRAVEL (GW) - fine to coarse<br>graded, dense, 20 mm maximum particle size, s<br>sub-angular, light brown, odourless, moist, no st<br>cementation<br>GRAVEL (GW) - fine to coarse, fine to coarse s<br>cobbles and boulders, trace silt, well graded, ver<br>greater than 200 mm maximum particle size, su<br>grey/brown, odourless, moist, no structure, no c<br>(maximum particle size interpreted through drilling<br>6.1 m - Poor water recovery during drilling. | e, trace silt, well<br>ub-rounded to<br>tructure, no<br>andy, trace<br>y dense to hard,<br>b-angular, dark<br>ementation<br>ng)               |                    | 5 cm<br>/ 50          |                      |                     |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |                                                                            |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · 7<br>· 8                                           |                                                                     | 4                                                                |                                                              |                                                                           | 8.22 m - Becomes some cobbles and boulders u<br>maximum particle size and very dense. (maximu<br>interpreted through tricone drilling)<br>GRAVEL (GW) and SAND (SW) - fine to coarse<br>cobbles and boulders, well graded, dense to very<br>sub-angular, grey, odourless, moist, no structure                                                                                                                                                                                       | up to 300 mm<br>im particle size<br>e, some silt, trace<br>/ dense,<br>e, no cementation                                                      |                    | 13<br>40<br>30        |                      |                     |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |                                                                            | •                                                                          |
| .10 (Continued on next page)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·10-                                                 |                                                                     |                                                                  |                                                              |                                                                           | (Continued on next pag                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ge)                                                                                                                                           |                    |                       |                      |                     |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |                                                                            |                                                                            |

| Pro<br>Ge                                           | oject:<br>otecl                         | : Shc<br>hnica                                 | oreac<br>al Inv                           | res HL<br>vestiga                                                    | DD DRILL HOLE #                                                                                                                                                                                                                                                                                   | # DH-BGC09<br>res East Approach                                         | 9-02               |                          |                      |                     |                                                                             | F                                                                                    | Project                                                                                | <br><b>Vo.</b> : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Page</b> 2<br>0093-07                              | <b>of</b> 9<br>6                                                           |
|-----------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------|--------------------------|----------------------|---------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|
| Sur<br>Co-<br>Gro<br>Dat<br>Dip<br>Dire             | ordin<br>ound<br>tum :<br>(deg<br>ectio | Meth<br>nates<br>Elev<br>UTN<br>grees<br>n : 0 | od :<br>s (m)<br>ation<br>1 NAI<br>s fror | Handho<br>: 462,2<br>o ( <i>m</i> ) : :<br>D 83, Z<br><i>n horia</i> | eld GPSDrill Designation :296.E, 5,474,411.NDrilling Contractor481.0Drill Method : Mudone 11Core : HQcontal) : 90Fluid : Polymer/MucCasing : PQCas                                                                                                                                                | Fraste MD-XL<br>: Geotech Drilling<br>rotary<br>i<br>sed To (m) : 15.20 | 1                  |                          |                      |                     | Start D<br>Finish<br>Final D<br>Depth<br>Logged<br>Review                   | ate :<br>Date<br>epth<br>to To<br>d by<br>red b                                      | 25 Sep<br>30 Sep<br>of Hole<br>p of Ro<br>: MMB<br>y : AJB                             | 09<br>09<br>e (m):<br>eck (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 75.7<br>)) : 14.4                                   | 9                                                                          |
| 5 Depth (m)                                         | Sample Type                             | Sample No.                                     | Weathering Grade                          | Symbol                                                               | Lithologic Description                                                                                                                                                                                                                                                                            |                                                                         | Instrument Details | SPT Blows per 150mm      | SPT-T Friction (kPa) | DCT Blows per 300mm | VANE<br>PEAK<br>REMOL<br>Hydra<br>Conduct<br>10 <sup>-8</sup><br>Core<br>20 | 40<br><u>FIE</u><br>→<br>→<br>wirty (m/<br>10 <sup>-5</sup> 1 <sup>-1</sup><br>Recov | Su<br>80<br>LD LAB<br>mes<br>Sec)<br>0 <sup>-4</sup> 10 <sup>-2</sup><br>very<br>60 80 | - kPa<br>12/<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>_ | ) 1<br>UC/2<br>Pocke<br>J DCT (*<br>SPT (*<br>W%<br>O | 60<br>I Pen /2<br>Iows/300mm)<br>Iows/300mm)<br>It & SPT I<br>WL%<br>SO 80 |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | X                                       | 5                                              |                                           |                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                         |                    | 26<br>24<br>19           |                      |                     |                                                                             |                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                     |                                                                            |
|                                                     | X                                       | 6                                              |                                           |                                                                      | 12.10 m - Becomes very dense with some cobbles<br>up to 300 mm maximum particle size. (maximum p<br>interpreted through drilling)<br>GRAVEL (GW) - fine to coarse, some fine to coars<br>silt, well graded, very dense to hard, sub-angular, to<br>odourless, moist, no structure, no cementation | and boulders<br>particle size<br>se sand, trace<br>prown,               |                    | 20<br>46<br>8 cm<br>/ 50 |                      |                     |                                                                             |                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                            |
| - 15<br>- 16                                        |                                         |                                                |                                           |                                                                      | Rock encountered at 14.49 m depth<br>See DH-BGC09-02 rock log.                                                                                                                                                                                                                                    | ı.                                                                      |                    |                          |                      |                     |                                                                             |                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                            |
| -17                                                 |                                         |                                                |                                           |                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                         |                    |                          |                      |                     |                                                                             |                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                            |
| - 19<br>19<br>                                      |                                         |                                                |                                           |                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                         |                    |                          |                      |                     |                                                                             |                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                            |
| B                                                   | GC                                      |                                                | BG(<br>N APP                              | C EN                                                                 | IGINEERING INC.<br>RTH SCIENCES COMPANY                                                                                                                                                                                                                                                           | Client: Tera                                                            | isen G             | Sas                      |                      |                     |                                                                             |                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                            |

| Sur<br>So-G<br>Sro<br>Dati<br>Dip<br>Dire | vey l<br>ordir<br>und<br>um :<br>(deg<br>ection | Methonates<br>Eleva<br>UTM<br>prees<br>n : 0 | Method :Handheld GPS<br>hates (m) : 462,296.E, 5,474,411.NDrill Designation : Fraste MD-XL<br>Drilling Contractor : Geotech Drilling<br>Drill Method : Mud rotaryElevation (m) : 481.0Drill Method : Mud rotaryUTM NAD 83, Zone 11<br>rees from horizontal) : 90Core : HQ<br>Fluid : Polymer/Mud<br>Casing : PQ1: 0Cased To (m) : 15.20 |        |                                                                                                                                                                                                                                                                               |                                                                                     |                    |              | Start I<br>Finish<br>Final I<br>Depth<br>Logge<br>Revie                                             | Date<br>Date<br>Depti<br>to To<br>ed by<br>wed l   | 25 Se<br>2 30 S<br>2 of H<br>5 of h<br>5 of h<br>1 MMI<br>5 y : A. | эр 09<br>ер 09<br>о <b>le</b> :<br><b>Rock</b><br>З<br>ЈВ | 9<br>75.7<br>( ( <i>m</i> )         | : 14.4                                            | 49                   |
|-------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------|--------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------|---------------------------------------------------|----------------------|
| Ueptn (m)                                 | Sample Type                                     | Sample No.                                   | Weathering Grade                                                                                                                                                                                                                                                                                                                        | Symbol | Lithologic Description                                                                                                                                                                                                                                                        |                                                                                     | Instrument Details | C<br>10<br>R | Hydraul<br>onducti<br>m/sec<br>y <sup>-8</sup> 10 <sup>-6</sup><br>Core<br>ecovery<br>RQD %<br>0 40 | ic<br>vity<br>10 <sup>-4</sup> -<br>,<br>, %<br>60 |                                                                    | 50<br>                                                    | UCS<br>) 100<br><br>↓ F<br>↓ 1<br>F | <ul> <li>3 - MP:</li> <li>150</li> <li></li></ul> | a<br>) 20<br><br>oad |
| 1<br> 2<br> 3                             |                                                 |                                              |                                                                                                                                                                                                                                                                                                                                         |        | 0 to 14.49 m - See DH-BGC09-02                                                                                                                                                                                                                                                | 2 soil log.                                                                         |                    |              |                                                                                                     |                                                    |                                                                    |                                                           |                                     |                                                   |                      |
| 5                                         |                                                 |                                              |                                                                                                                                                                                                                                                                                                                                         |        | METAMORPHOSED VOLCANICS (Rhyolite) - Da<br>medium grained, slightly foliated, equigranular, str<br>weathered, with potassic alteration and some qua<br>70%<br>Two joint sets with alpha angles of 65 and 30 deg                                                               | ark pinkish grey, fine to<br>rong (R4), slightly<br>ırtz veins, RQD = 60 -<br>ırees |                    |              |                                                                                                     |                                                    |                                                                    |                                                           |                                     |                                                   |                      |
| 6<br>7<br>8                               |                                                 |                                              |                                                                                                                                                                                                                                                                                                                                         |        | VOLCANICS (Dacite) - Light greenish grey, fine to<br>bimodal; medium grained chloritized mafics in a fin<br>strong (R4), fresh, slight chlorite alteration, RQD<br>17.34 m - 0.25 m wide altered volcanic dike.                                                               | o medium grained,<br>ne grained matrix,<br>= 60 - 85%                               |                    |              |                                                                                                     |                                                    |                                                                    |                                                           |                                     |                                                   |                      |
| 9                                         |                                                 |                                              |                                                                                                                                                                                                                                                                                                                                         |        | METAMORPHOSED VOLCANICS (Rhyolite) - Da<br>grained, foliated, equigranular, strong (R4), fresh,<br>potassic and minor chlorite alteration, RQD = 50 -<br>One joint set of approximately 45 degrees<br>18.63 m - Fault with clay and calcite fault gouge. If<br>of 65 degrees. | ark pink grey, fine<br>with predominantly<br>- 80%<br>Fault has an alpha angle      |                    |              |                                                                                                     |                                                    |                                                                    |                                                           |                                     |                                                   |                      |
| -                                         |                                                 |                                              |                                                                                                                                                                                                                                                                                                                                         |        | (Continued on next page)                                                                                                                                                                                                                                                      |                                                                                     |                    |              |                                                                                                     |                                                    |                                                                    |                                                           |                                     |                                                   |                      |

| Proje<br>Geot                                               | ect:<br>tech                                 | Sho<br>nnica                                  | reacre<br>al Inves                                    | s HDD<br>stigatio                                         | DRILL HOLE # D<br>Location : Shoreacres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H-BGC09-02<br>East Approach                                                                              | Page -<br>Project No. : 0093-0                                                                                                                                                                                                                                                                                                                                           | 4 <b>of</b> 9<br>076         |
|-------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Surve<br>Co-ol<br>Grou<br>Datur<br>Datur<br>Dip (d<br>Direc | ey N<br>rdin<br>nd I<br>m : \<br>deg<br>tior | Metho<br>ates<br>Elev<br>UTM<br>rees<br>n : 0 | od :Ha<br>; (m) : -<br>ation (<br>  NAD {<br>; from [ | ndheld<br>462,296<br><b>m)</b> : 48<br>33, Zon<br>horizor | GPS         Drill Designation : Fra:           6.E, 5,474,411.N         Drilling Contractor : G           1.0         Drill Method : Mud rota           e 11         Core : HQ           ntal) : 90         Fluid : Polymer/Mud           Casing : PQ         Cased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ste MD-XL<br>eotech Drilling<br>ry<br><b>To (m)</b> : 15.20                                              | Start Date : 25 Sep 09<br>Finish Date: 30 Sep 09<br>Final Depth of Hole : 75.7<br>Depth to Top of Rock (m) : 14<br>Logged by : MMB<br>Reviewed by : AJB                                                                                                                                                                                                                  | l.49                         |
| Depth (m)                                                   | Sample Type                                  | Sample No.                                    | Weathering Grade                                      | Symbol                                                    | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Instrument Details                                                                                       | Hydraulic<br>Conductivity<br>m/sec         UCS - M           10*         10*         10*         50         100         1           10*         10*         10*         50         100         1           Core<br>Recovery %         Point         ◆ Triaxi           RQD %          RMR           20         40         60         80         20         40         60 | .Pa<br>50 200<br>Load<br>ial |
| -21<br>-22<br>-23<br>-24<br>-25<br>-26                      | 60.                                          | 1                                             |                                                       |                                                           | METAMORPHOSED VOLCANICS (Rhyolite) - Dar<br>grained, foliated, equigranular, strong to very strong<br>predominantly potassic and minor chlorite alteration<br>22.6 m - Increase in potassic alteration and quartz s<br>veinlets to a maximum thickness of 5 mm.<br>23.19 m - 2 mm wide calcite infilled joint with an alp<br>degrees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | k pink grey, fine<br>(R4-R5), fresh with<br>h, RQD = 50 - 80%<br>stockworks veins and<br>wha angle of 65 |                                                                                                                                                                                                                                                                                                                                                                          |                              |
| -27<br>-28<br>-29                                           |                                              |                                               |                                                       |                                                           | <ul> <li>26.55 m - Decrease in quartz veinlets.</li> <li>27.10 m - Jammed core tube during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery. Poor water water recovery during drilling causing poor recovery.</li> <li>29.06 m - Fault with clay and calcite fault gouge. Fault of 55 degrees.</li> </ul> | l crushed rock and<br>lling.<br>angle of 55 degrees.<br>ault has an alpha angle                          |                                                                                                                                                                                                                                                                                                                                                                          |                              |
| - <sub>30</sub> 上                                           |                                              |                                               |                                                       | lě ě ě                                                    | (Continued on next page)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                          |                              |
| BC                                                          |                                              |                                               |                                                       |                                                           | SINEERING INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Client: Terasen Gas                                                                                      |                                                                                                                                                                                                                                                                                                                                                                          |                              |

| Pro<br>Ge                               | oject:<br>otecl                                                                                                 | Sho<br>hnica                                   | oreacre<br>al Inve                                  | s HDD<br>stigatio                                                 | DRILL HOLE #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # DH-BGC09-02<br>res East Approach                                                                                                                                                                                                          |                    |                                         |                                                                                                  | P                                                       | rojec                                              | t No.                                               | <b>Pa</b><br>. : 00               | <b>ge</b> 5<br>93-07                     | <b>of</b> 9<br>6 |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------|------------------------------------------|------------------|
| Sur<br>Co-<br>Gro<br>Dat<br>Dip<br>Dire | vey l<br>ordir<br>ound<br>um :<br>(deg<br>ection                                                                | Meth<br>nates<br>Elev<br>UTM<br>grees<br>n : 0 | od :Ha<br>s (m) :<br>ation (<br>1 NAD 8<br>s from 1 | ndheld<br>462,296<br><b>m)</b> : 48<br>33, Zono<br><b>horizor</b> | GPS         Drill Designation :           6.E, 5,474,411.N         Drilling Contractor           1.0         Drill Method : Mud           e 11         Core : HQ           ntal) : 90         Fluid : Polymer/Muc           Casing : PQ         Cas                                                                                                                                                                                                                                                                                                                                                                             | Fraste MD-XL<br>: Geotech Drilling<br>rotary<br>d<br>sed To (m) : 15.20                                                                                                                                                                     |                    | S<br>F<br>D<br>L<br>R                   | itart D<br>inish<br>inal D<br>epth<br>ogge<br>Reviev                                             | Date : :<br>Date:<br>Depth<br>to To<br>d by :<br>ved by | 25 Se<br>30 Se<br>of Ho<br>p of F<br>MME<br>/ : AJ | p 09<br>ep 09<br><b>ble</b> : "<br><b>Rock</b><br>B | )<br>75.7<br>* <b>(m)</b>         | : 14.4                                   | .9               |
| 3 Depth (m)                             | Sample Type                                                                                                     | Sample No.                                     | Weathering Grade                                    | Symbol                                                            | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                             | Instrument Details | H<br>Co<br>10 <sup>-1</sup><br>Re<br>20 | lydrauli<br>nnductiv<br>m/sec<br><sup>8</sup> 10 <sup>-6</sup><br>Core<br>ecovery<br>RQD %<br>40 | c<br>ity<br>10 <sup>4</sup> 10<br><br>%<br>%<br>60 8    |                                                    | 50<br>                                              | UC:<br>100<br>F<br>> 1<br>F<br>40 | S - MPa<br>0 150<br>Point Lo<br>Triaxial | 200<br>          |
|                                         |                                                                                                                 |                                                |                                                     | · > > > > > > > > > > > > > > > > > > >                           | METAMORPHOSED VOLCANICS (Rhyolite) -<br>grained, foliated, equigranular, strong to very st<br>predominantly potassic and minor chlorite altera<br>31.61 m - Two predominant joint sets; one with<br>degrees and spacing of approximately 0.80 m, a<br>alpha angle of 55 degrees and spacing of appro                                                                                                                                                                                                                                                                                                                            | Dark pink grey, fine<br>rong (R4-R5), fresh with<br>ation, RQD = 50 - 80%<br>an alpha angle of 40<br>and a second with an<br>ximately 2 m.                                                                                                  |                    |                                         |                                                                                                  |                                                         | <u> </u>                                           |                                                     |                                   |                                          |                  |
|                                         | The second se | 2                                              |                                                     |                                                                   | <ul> <li>VOLCANICS (Dacite) - Greenish grey, fine to comedium to coarse grained chloritized mafics in a strong, fresh, with chlorite alteration, RQD = 80</li> <li>35.60 m - 0.42 m wide altered volcanic dike with contacts have alpha angles of approximately 50</li> <li>METAMORPHOSED VOLCANICS (Rhyolite) - grained, foliated, equigranular, very strong (R5) alteration and trace quartz veinlets to a maximul 55 - 80%</li> <li>36.8 m - Fault with minor clay gouge and weath Fault has an alpha angle of 65 degrees.</li> <li>37.50 m - Predominantly one joint set with an al and spacing of 0.5 to 0.6 m.</li> </ul> | parse grained, bimodal;<br>a fine grained matrix, very<br>- 90%<br>n sharp contacts. Both<br>degrees.<br>Dark pinkish grey, fine<br>, fresh, with potassic<br>m size of 2 mm, RQD =<br>hering of mafic minerals.<br>pha angle of 55 degrees |                    |                                         |                                                                                                  |                                                         |                                                    |                                                     |                                   |                                          |                  |
| -<br>39<br>-<br>-                       | The second se | 5                                              |                                                     |                                                                   | 39.58 m - Fault with clay and calcite fault gouge degrees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and an alpha angle of 55                                                                                                                                                                                                                    |                    |                                         |                                                                                                  |                                                         |                                                    |                                                     |                                   |                                          |                  |
| -40-                                    |                                                                                                                 |                                                | ı                                                   | <u></u>                                                           | (Continued on next page)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                       |                    |                                         |                                                                                                  | • -                                                     |                                                    |                                                     |                                   |                                          | <u></u>          |
| B                                       | GC                                                                                                              |                                                | BGC                                                 |                                                                   | INEERING INC.<br>I sciences company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Client: Terasen Gas                                                                                                                                                                                                                         |                    |                                         |                                                                                                  |                                                         |                                                    |                                                     |                                   |                                          |                  |

| Pro<br>Ge                               | oject:<br>otecl                                   | Sho<br>hnica                               | reacre<br>al Inve                                   | s HDD<br>stigatio                                                                                                                                       | DRILL HOLE                                                                                                                                                                                                                                              | # DH-BGC09-02<br>Icres East Approach                                                    |                    |          |                                                                    |                                                                                                  | Proje                                                       | ct No                                                      | <b>F</b><br><b>5.</b> : 0        | <b>'age</b> 6<br>093-0                      | 6 <b>of</b> 9<br>076               |         |
|-----------------------------------------|---------------------------------------------------|--------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------|----------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|----------------------------------|---------------------------------------------|------------------------------------|---------|
| Sur<br>Co-<br>Gro<br>Dat<br>Dip<br>Dire | vey l<br>ordin<br>ound<br>tum :<br>(deg<br>ection | Methnates<br>Elev<br>UTM<br>grees<br>n : 0 | od :Ha<br>s (m) :<br>ation (<br>I NAD {<br>s from ; | ndheld<br>462,296<br><b>m)</b> : 48<br>33, Zono<br><b>horizor</b>                                                                                       | GPS         Drill Designation           6.E, 5,474,411.N         Drilling Contractor           1.0         Drill Method : Mu           e 11         Core : HQ           ntal) : 90         Fluid : Polymer/Mu           Casing : PQ         Casing : PQ | : Fraste MD-XL<br>or : Geotech Drilling<br>d rotary<br>ud<br><b>ased To (m)</b> : 15.20 |                    |          | Star<br>Finis<br>Fina<br>Dep<br>Log<br>Revi                        | t Date<br>sh Dai<br>I Depi<br>th to 1<br>ged bj<br>iewed                                         | : 25 S<br>te: 30 S<br>th of H<br>Top of<br>y : MM<br>by : A | ep 09<br>Sep 0<br><b>Iole</b> :<br><b>Roc</b> i<br>B<br>JB | 9<br>19<br>75.7<br><b>k (m</b> , | 7<br>):14                                   | .49                                |         |
| S Depth (m)                             | Sample Type                                       | Sample No.                                 | Weathering Grade                                    | Symbol                                                                                                                                                  | Lithologic Description                                                                                                                                                                                                                                  |                                                                                         | Instrument Details | (<br>1   | Hydra<br>Condu<br>m/s<br>0 <sup>-8</sup> 10<br>Co<br>Recove<br>RQE | aulic<br>ctivity<br>ec<br>0 <sup>-6</sup> 10 <sup>-4</sup><br>re -<br>ery % _<br><br>0 6<br>0 60 |                                                             | 2                                                          |                                  | CS - MI<br>00 15<br>Point<br>Triaxia<br>RMR | Pa<br>50 200<br>Load<br>al<br>0 80 |         |
| 40-<br>-<br>-<br>-<br>41<br>-           |                                                   |                                            |                                                     | <pre>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</pre> | 40.48 m - 0.5 m wide fault zone with clay and fractured rock. Fault has an alpha angle of app                                                                                                                                                           | l calcite fault gouge and<br>proximately 55 degrees.                                    |                    |          |                                                                    |                                                                                                  |                                                             |                                                            |                                  |                                             |                                    |         |
|                                         |                                                   |                                            |                                                     |                                                                                                                                                         | VOLCANICS (Dacite)- Greenish grey, fine to o<br>very strong (R5), fresh, with chlorite alteration<br>to 3 mm thick, 65 - 100%<br>42.0 m - One joint set with an alpha angle of 3<br>0.3 - 0.6 m.                                                        | coarse grained, bimodal,<br>and some quartz veins up<br>5 degrees and spacing of        |                    |          |                                                                    |                                                                                                  |                                                             |                                                            |                                  |                                             |                                    |         |
| 46<br>47<br>47<br>47<br>48<br>48<br>    |                                                   |                                            |                                                     |                                                                                                                                                         | 47.45 m - 0.18 m wide altered volcanic dike w                                                                                                                                                                                                           | ith gradational contacts.                                                               |                    |          |                                                                    |                                                                                                  |                                                             |                                                            |                                  |                                             |                                    |         |
|                                         |                                                   |                                            |                                                     |                                                                                                                                                         | METAMORPHOSED VOLCANICS (Rhyolite)<br>grained, equigranular, foliated, very strong (R                                                                                                                                                                   | - Dark pinkish grey, fine<br>5), fresh, with potassic                                   |                    |          |                                                                    |                                                                                                  |                                                             |                                                            |                                  |                                             |                                    |         |
| -50-                                    | I                                                 |                                            | l                                                   | 1                                                                                                                                                       | (Continued on next pag                                                                                                                                                                                                                                  | e)                                                                                      | 1                  | <u> </u> | 1                                                                  |                                                                                                  |                                                             |                                                            |                                  |                                             |                                    | لـ<br>_ |
| B                                       | G                                                 |                                            | BGC                                                 |                                                                                                                                                         | SINEERING INC.                                                                                                                                                                                                                                          | Client: Terasen Gas                                                                     |                    |          |                                                                    |                                                                                                  |                                                             |                                                            |                                  |                                             |                                    |         |

| Pro<br>Geo                                           | oject:<br>otecl                                 | Sho<br>hnica                                | reacre<br>al Inve                                   | s HDD<br>stigatio                                                 | DRILL HOLE                                                                                                                         | # DH-BGC09-02<br>cres East Approach                                                          |          | Pro                                                                                                | <b>Page</b> 7 of 9<br>ject No. : 0093-076                                                |
|------------------------------------------------------|-------------------------------------------------|---------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Sur<br>Co-<br>Gro<br>Dat<br>Dip<br>Dire              | vey l<br>ordir<br>und<br>um :<br>(deg<br>ection | Methonates<br>Elev<br>UTM<br>prees<br>n : 0 | od :Ha<br>s (m) :<br>ation (<br>I NAD 8<br>s from 1 | ndheld<br>462,296<br><b>m)</b> : 48<br>33, Zono<br><b>horizor</b> | GPSDrill Designation6.E, 5,474,411.NDrilling Contractor1.0Drill Method : Muoe 11Core : HQntal) : 90Fluid : Polymer/MuCasing : PQCa | : Fraste MD-XL<br><b>r</b> : Geotech Drilling<br>d rotary<br>Id<br><b>sed To (m)</b> : 15.20 |          | Start Date : 25<br>Finish Date: 3<br>Final Depth o<br>Depth to Top<br>Logged by : N<br>Reviewed by | Sep 09<br>) Sep 09<br>f <b>Hole</b> : 75.7<br><b>of Rock (m)</b> : 14.49<br>1MB<br>: AJB |
|                                                      |                                                 |                                             |                                                     |                                                                   |                                                                                                                                    |                                                                                              |          | Hydraulic ····<br>Conductivity ·<br>m/sec ····                                                     | UCS - MPa                                                                                |
|                                                      | ,pe                                             |                                             | g Grade                                             |                                                                   | Lithologic Description                                                                                                             |                                                                                              | Details  | 10 <sup>-8</sup> 10 <sup>-6</sup> 10 <sup>-4</sup> 10 <sup>-2</sup>                                | 50 100 150 200                                                                           |
| epth (m)                                             | mple Ty                                         | mple No                                     | eatherin                                            | mbol                                                              |                                                                                                                                    |                                                                                              | strument | Recovery %                                                                                         | ♦ Triaxial<br>RMR                                                                        |
| ല്<br>-50-                                           | Sa                                              | Sa                                          | Ň                                                   | Sy                                                                |                                                                                                                                    |                                                                                              | sul      | 20 40 60 80                                                                                        | 20 40 60 80                                                                              |
| -51<br>-52<br>-53<br>-55<br>-56<br>-57<br>-58<br>-59 |                                                 | 3                                           |                                                     |                                                                   | 52.89 m - Increase in joint frequency.<br>59.27 m - High angle joint with a beta angle of                                          | 75 degrees.                                                                                  |          |                                                                                                    |                                                                                          |
|                                                      |                                                 |                                             |                                                     |                                                                   | (Continued on next page                                                                                                            | e)                                                                                           |          |                                                                                                    |                                                                                          |
| B                                                    | GC                                              |                                             |                                                     |                                                                   | SINEERING INC.<br>I sciences company                                                                                               | Client: Terasen Gas                                                                          |          |                                                                                                    |                                                                                          |

| Pro<br>Geo                               | oject:<br>otech                                    | Sho<br>hnica                                   | reacre<br>al Inve                                 | es HDD<br>stigatio                                                  | DRILL HOLE #<br>Location : Shoreacre                                                                                                                                                                                                                       | DH-BGC09-02<br>es East Approach                                         |         |                           |                                                     | Pr                                                      | oject                                               | <b>No.</b> :                   | <b>Pag</b><br>0093    | e 8 <b>o</b> i<br>3-076 | <b>f</b> 9 |
|------------------------------------------|----------------------------------------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------|---------------------------|-----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|--------------------------------|-----------------------|-------------------------|------------|
| Sur<br>Co-<br>Gro<br>Data<br>Dip<br>Dire | vey N<br>ordin<br>ound I<br>um :<br>(deg<br>ection | Weth<br>nates<br>Elev<br>UTM<br>prees<br>n : 0 | od :Ha<br>s (m) :<br>ation (<br>I NAD :<br>s from | ndheld<br>462,296<br>( <i>m</i> ) : 48<br>83, Zon<br><i>horizoi</i> | GPS         Drill Designation : F           6.E, 5,474,411.N         Drilling Contractor           1.0         Drill Method : Mud r           e 11         Core : HQ           ntal) : 90         Fluid : Polymer/Mud           Casing : PQ         Casing | Fraste MD-XL<br>: Geotech Drilling<br>otary<br><b>ed To (m)</b> : 15.20 |         | Si<br>Fi<br>Di<br>Li<br>R | tart D<br>inish<br>inal D<br>epth<br>oggeo<br>eview | ate:2<br>Date:3<br>epth c<br>to Top<br>d by:1<br>red by | 5 Sep<br>30 Sep<br>of Hole<br>of Ro<br>MMB<br>: AJB | 09<br>0 09<br>e : 75<br>ock (i | 5.7<br><b>m)</b> : 1  | 14.49                   |            |
|                                          |                                                    |                                                |                                                   |                                                                     |                                                                                                                                                                                                                                                            |                                                                         |         | H<br>Co                   | ydraulic<br>nductivi<br>m/sec                       | ty                                                      |                                                     |                                | UCS -                 | MPa                     |            |
|                                          | эе                                                 |                                                | g Grade                                           |                                                                     | Lithologic Description                                                                                                                                                                                                                                     |                                                                         | Details | 10 <sup>-8</sup>          | 10 <sup>-6</sup>                                    | 10 <sup>-4</sup> 10 <sup>-2</sup>                       | 2                                                   | 50<br>                         | 100<br> <br> <br> Poi | 150<br>Int Loa          | 200<br>d   |
| oth (m)                                  | nple Ty <sub>l</sub>                               | nple No                                        | athering                                          | lodn                                                                |                                                                                                                                                                                                                                                            |                                                                         | rument  | Re                        | Covery Covery                                       | »<br>·                                                  |                                                     | \$                             | Tria                  | axial                   |            |
| Dep                                      | Sar                                                | Sar                                            | We                                                | Syn                                                                 |                                                                                                                                                                                                                                                            |                                                                         | Inst    | 20                        | 40                                                  | <br>60 80                                               |                                                     | 20                             | 40                    | 60                      | 80         |
| 60-<br>-<br>-<br>-<br>61                 |                                                    |                                                |                                                   |                                                                     | METAMORPHOSED VOLCANICS (Rhyolite) - D<br>grained, foliated, equigranular, very strong (R5),<br>alteration and some quartz veins up to 5 mm thic                                                                                                           | Dark pink grey, fine<br>fresh with potassic<br>;k, RQD = 70 - 100%      |         |                           |                                                     |                                                         |                                                     |                                |                       |                         |            |
| -<br>-<br>-<br>62                        |                                                    |                                                |                                                   |                                                                     | 61.36 m - Fault with clay gouge and an alpha an                                                                                                                                                                                                            | gle of 65 degrees.                                                      |         |                           |                                                     |                                                         |                                                     |                                |                       |                         |            |
| -63                                      |                                                    |                                                |                                                   |                                                                     |                                                                                                                                                                                                                                                            |                                                                         |         |                           |                                                     |                                                         |                                                     |                                |                       |                         |            |
| 64                                       | £\$                                                | 6                                              |                                                   |                                                                     |                                                                                                                                                                                                                                                            |                                                                         |         |                           |                                                     |                                                         |                                                     |                                |                       |                         |            |
| -65                                      |                                                    |                                                |                                                   |                                                                     |                                                                                                                                                                                                                                                            |                                                                         |         |                           |                                                     |                                                         |                                                     |                                |                       |                         |            |
| -66                                      |                                                    |                                                |                                                   |                                                                     | 65.90 m - Increase in quartz stockworks veins ar                                                                                                                                                                                                           | nd veinlets.                                                            |         |                           |                                                     |                                                         |                                                     |                                |                       |                         |            |
| -67                                      |                                                    |                                                |                                                   |                                                                     |                                                                                                                                                                                                                                                            |                                                                         |         |                           |                                                     |                                                         |                                                     |                                |                       |                         |            |
| -60                                      |                                                    |                                                |                                                   |                                                                     | 68.20 m - Potassic alteration becomes less pred                                                                                                                                                                                                            | ominant.                                                                |         |                           |                                                     |                                                         |                                                     |                                |                       |                         |            |
| -                                        |                                                    |                                                |                                                   |                                                                     |                                                                                                                                                                                                                                                            |                                                                         |         |                           |                                                     |                                                         |                                                     |                                |                       |                         |            |
| -70                                      |                                                    | •                                              |                                                   | ,. , v                                                              | (Continued on next page)                                                                                                                                                                                                                                   |                                                                         |         |                           |                                                     |                                                         |                                                     |                                |                       |                         | <u> </u>   |
| B                                        | GC                                                 |                                                | SGC                                               |                                                                     | SINEERING INC.<br>I SCIENCES COMPANY                                                                                                                                                                                                                       | Client: Terasen Gas                                                     |         |                           |                                                     |                                                         |                                                     |                                |                       |                         |            |

| Proje<br>Geor                                          | ect:<br>tech                               | Sho<br>nnica                                  | oreacre<br>al Inve                                  | s HDD<br>stigatic                                                | DRILL HOLE<br>Location : Shoread                                                                                                                                                                                                                                                                                                             | # DH-BGC09-02<br>res East Approach                                                          |                    |              |                                                                                                   |                                             | Proje                                                   | ct No                                                      | <b>P</b><br><b>D.</b> : 0        | <b>Page</b> (<br>093-0                    | 9 <b>of</b> 9<br>76        |   |
|--------------------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|--------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|----------------------------------|-------------------------------------------|----------------------------|---|
| Surv<br>Co-o<br>Grou<br>Datu<br>Datu<br>Dip (<br>Direc | ey N<br>rdin<br>Ind<br>m :<br>deg<br>ctior | Meth<br>nates<br>Elev<br>UTM<br>rees<br>n : 0 | od :Ha<br>s (m) :<br>ation (<br>I NAD {<br>s from ( | ndheld<br>462,296<br><b>m)</b> : 48<br>33, Zon<br><b>horizor</b> | GPS         Drill Designation :           6.E, 5,474,411.N         Drilling Contractor           1.0         Drill Method : Mud           e 11         Core : HQ           ntal) : 90         Fluid : Polymer/Mu           Casing : PQ         Ca                                                                                            | Fraste MD-XL<br>r : Geotech Drilling<br>rotary<br>d<br><b>sed To (m)</b> : 15.20            |                    |              | Start<br>Finisl<br>Final<br>Depth<br>Logge<br>Revie                                               | Date<br>Dat<br>Dept<br>to T<br>ed by<br>wed | : 25 S<br>e: 30 S<br>h of H<br>op of<br>': MM<br>by : A | ep 09<br>Sep 0<br><b>Iole</b> :<br><b>Roc</b> i<br>B<br>JB | 9<br>19<br>75.7<br><b>k (m</b> , | 7<br>) : 14                               | .49                        |   |
| Depth (m)                                              | Sample Type                                | Sample No.                                    | Weathering Grade                                    | Symbol                                                           | Lithologic Description                                                                                                                                                                                                                                                                                                                       |                                                                                             | Instrument Details | C<br>10<br>R | Hydrau<br>onduct<br>m/sec<br>0 <sup>-8</sup> 10 <sup>-6</sup><br>Core<br>eccover<br>RQD 9<br>0 40 | lic<br>ivity<br>10⁴<br>y %<br>%<br>60       |                                                         | 2                                                          |                                  | CS - M<br>00 1<br>Point<br>Triaxia<br>RMR | Pa<br>50 200<br>Load<br>al |   |
| -70<br>-71<br>-72<br>-73<br>-74<br>-75<br>76           | (23)<br>(23)                               | 4                                             |                                                     |                                                                  | METAMORPHOSED VOLCANICS (Rhyolite) -<br>grained, foliated, equigranular, very strong (R5<br>alteration and some quartz veins up to 5 mm th<br>74.17 m - 0.35 m wide fault zone which contain<br>End of Borehole @ 75.69 m<br>Notes:<br>1. Discontinued drilling as reached target depth<br>2. Hole grouted and filled with bentonite followi | Dark pink grey, fine<br>), fresh with potassic<br>ick, RQD = 70 - 100%<br>ns fault breccia. |                    |              |                                                                                                   |                                             |                                                         |                                                            |                                  |                                           |                            |   |
| 77<br>78<br>79<br>-80                                  |                                            |                                               |                                                     |                                                                  | <ol> <li>Hole grouted and filled with bentonite followin</li> <li>Approximate depth of water as interpreted th</li> <li>2009 - 4.6 m.</li> <li>Drill bit hardness: 9 - 11</li> </ol>                                                                                                                                                         | ng completion.<br>rough drilling: Sept. 30,                                                 |                    |              |                                                                                                   |                                             |                                                         |                                                            |                                  |                                           |                            |   |
| BC                                                     | )<br>)                                     |                                               |                                                     | ENG                                                              | SINEERING INC.                                                                                                                                                                                                                                                                                                                               | Client: Terasen Gas                                                                         |                    |              |                                                                                                   |                                             |                                                         |                                                            |                                  |                                           |                            | - |

| Pro<br>Ge                               | oject:<br>otecl                                  | Sho                                            | oreac<br>al Inv                           | res l<br>vestig                                              | IDD DRILL HOLE and Location : Shoread                                                                                                                                                                                                                                                     | # DH-BGC09<br>cres East Approach                                         | 9-03               |                     |                      |                     |                                                                             | P                                                                                                      | roject N                                                                            | P<br>Io.: 0                                                        | <b>Page</b> 1<br>093-07                                                 | <b>of</b> 4<br>6                                                       |
|-----------------------------------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------|---------------------|----------------------|---------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|
| Sur<br>Co-<br>Gro<br>Dat<br>Dip<br>Dire | vey l<br>ordir<br>ound<br>um :<br>(deg<br>ection | Weth<br>nates<br>Elev<br>UTN<br>grees<br>n : 0 | od :<br>s (m)<br>ation<br>1 NAI<br>s fron | Hanc<br>: 462<br><b>7 (<i>m</i>)</b><br>D 83,<br><b>7 ho</b> | held GPS         Drill Designation           2,365.E, 5,474,550.N         Drilling Contractor           : 537.0         Drill Method : Mud           Zone 11         Core : HQ           rizontal) : 90         Fluid : Polymer/Mu           Casing : PQ         Ca                       | Fraste MD-XL<br>r : Geotech Drilling<br>rotary<br>d<br>sed To (m) : 6.86 | I                  |                     |                      |                     | Start D<br>Finish<br>Final D<br>Depth<br>Logged<br>Review                   | ate<br>Date<br>epth<br>to To<br>d by<br>red b                                                          | 02 Oct 0<br>03 Oct<br>of Hole<br>p of Ro<br>MMB<br>y : AJB                          | )9<br>09<br>(m):<br>ck (m,                                         | : 19.3<br>) : 6.70                                                      | )                                                                      |
| o Depth (m)                             | Sample Type                                      | Sample No.                                     | Weathering Grade                          | Symbol                                                       | Lithologic Description                                                                                                                                                                                                                                                                    |                                                                          | Instrument Details | SPT Blows per 150mm | SPT-T Friction (kPa) | DCT Blows per 300mm | VANE<br>PEAK<br>REMOL<br>Hydra<br>Conduct<br>10 <sup>-8</sup><br>Core<br>20 | 40<br><u>FIEI</u><br>●<br>0<br>% Fir<br>aulic (m/<br>ivity (m/<br>10 <sup>-6</sup> 10<br>Recov<br>40 6 | Su -<br>80<br>D LAB<br>es<br>sec)<br>0 <sup>4</sup> 10 <sup>-2</sup><br>ery<br>0 80 | kPa<br>120<br>△<br>—<br>—<br>Moistu<br>W <sub>p</sub> %<br>×<br>20 | 1<br>UC/2<br>Pocke<br>DCT (b<br>SPT (b<br>re Conter<br>W%<br>O-<br>40 6 | 30<br>Pen /2<br>ows/300mi<br>lows/300mi<br>it & SP1<br>W<br>;<br>50 80 |
| -0-                                     |                                                  |                                                |                                           |                                                              | <ul> <li>SAND (SW) and GRAVEL (GW) - fine to medium gravel, trace silt, well graded, compact, sub-round odourless, moist, no structure, no cementation</li> <li>SILT (ML) - trace fine sand, low plasticity, firm to sensitivity, grey, dry, homogeneous, weak cement strength</li> </ul> | sand, fine<br>ed, brown,<br>stiff, low<br>ation, low dry                 |                    |                     |                      |                     |                                                                             |                                                                                                        |                                                                                     |                                                                    |                                                                         |                                                                        |
| 2                                       | X                                                | 1                                              |                                           |                                                              |                                                                                                                                                                                                                                                                                           |                                                                          |                    | 7<br>9<br>10        |                      |                     |                                                                             |                                                                                                        |                                                                                     |                                                                    |                                                                         |                                                                        |
| 3                                       | X                                                | 2                                              |                                           |                                                              |                                                                                                                                                                                                                                                                                           |                                                                          |                    | 7<br>9<br>11        |                      |                     |                                                                             |                                                                                                        |                                                                                     | •                                                                  |                                                                         |                                                                        |
| 5                                       | X                                                | 3                                              |                                           |                                                              | 4.9 m - Silt becomes moist.                                                                                                                                                                                                                                                               |                                                                          |                    | 3<br>5<br>8         |                      |                     |                                                                             |                                                                                                        |                                                                                     | •                                                                  |                                                                         |                                                                        |
| 7                                       |                                                  |                                                |                                           | •••••                                                        | SAND (SW) and GRAVEL (GP) - fine to coarse sa<br>trace silt, well graded, compact, sub-rounded to sa<br>mm maximum particle size, moist, no structure, no<br>Rock encountered at 6.70 m depth<br>See DH-BGC09-03 rock log.                                                                | and, fine gravels,<br>ub-angular, 15<br>o cementation                    |                    |                     |                      |                     |                                                                             |                                                                                                        |                                                                                     |                                                                    |                                                                         |                                                                        |
| 9                                       |                                                  |                                                |                                           |                                                              |                                                                                                                                                                                                                                                                                           |                                                                          |                    |                     |                      |                     |                                                                             |                                                                                                        |                                                                                     |                                                                    |                                                                         |                                                                        |
| 3                                       | GC                                               |                                                | BG(                                       |                                                              | NGINEERING INC.<br>Arth sciences company                                                                                                                                                                                                                                                  | Client: Tera                                                             | asen G             | as                  |                      |                     |                                                                             |                                                                                                        |                                                                                     |                                                                    |                                                                         |                                                                        |

| Pro<br>Geo                               | oject:<br>otecl                                  | Shc<br>hnica                                   | oreacre<br>al Inve                                | es HDD<br>stigatio                                                    | DRILL HOLE #                                                                                                                                                                                                                                        | # DH-BGC09-03<br>res East Approach                                |         |                            |                                                          | P                                                 | roject                                                 | <b>No.</b> : (                 | <b>Pag</b><br>0093 | e 2 o<br>8-076     | <b>f</b> 4 |
|------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------|----------------------------|----------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|--------------------------------|--------------------|--------------------|------------|
| Sur<br>Co-<br>Gro<br>Date<br>Dip<br>Dire | vey l<br>ordin<br>ound<br>um :<br>(deg<br>ection | Meth<br>nates<br>Elev<br>UTM<br>grees<br>n : 0 | od :Ha<br>s (m) :<br>ation (<br>1 NAD 8<br>s from | indheld<br>462,365<br>( <i>m</i> ) : 53<br>83, Zoni<br><i>horizor</i> | GPS         Drill Designation :           5.E, 5,474,550.N         Drilling Contractor           7.0         Drill Method : Mud           e 11         Core : HQ           ntal) : 90         Fluid : Polymer/Muc           Casing : PQ         Cas | Fraste MD-XL<br>: Geotech Drilling<br>rotary<br>sed To (m) : 6.86 |         | S<br>F<br>F<br>L<br>L<br>F | Start E<br>Finish<br>Final E<br>Depth<br>.ogge<br>Reviev | Date<br>Date<br>Depth<br>to To<br>d by :<br>ved b | 02 Oct<br>03 Oc<br>of Hol<br>p of Ro<br>MMB<br>y : AJB | 09<br>t 09<br>e : 19<br>ock (n | .3<br>n):(         | 6.70               |            |
|                                          |                                                  |                                                |                                                   |                                                                       |                                                                                                                                                                                                                                                     |                                                                   |         | H<br>Co                    | lydrauli<br>onductiv<br>m/sec                            | c ····<br>ity:                                    |                                                        | ι                              | JCS -              | MPa                |            |
|                                          | ē                                                |                                                | Grade                                             |                                                                       | Lithologic Description                                                                                                                                                                                                                              |                                                                   | Details | 10                         | <sup>8</sup> 10 <sup>-6</sup>                            | 10 <sup>-4</sup> 10                               | )-2                                                    | 50                             | 100<br>I<br>Poi    | 150<br>I<br>nt Loa | 200<br>d   |
| (u)                                      | le Typ                                           | le No.                                         | lering                                            |                                                                       |                                                                                                                                                                                                                                                     |                                                                   | nent [  | R                          | Core<br>ecovery                                          | %                                                 |                                                        | \$                             | Tria               | axial              |            |
| Depth                                    | Samp                                             | Samp                                           | Weath                                             | Symb                                                                  |                                                                                                                                                                                                                                                     |                                                                   | Instru  | 20                         | RQD %                                                    |                                                   |                                                        | 20                             | RM                 | R _                | <u>_</u>   |
| 1<br>1<br>2<br>                          |                                                  |                                                |                                                   |                                                                       | 0 to 6.70 m - See DH-BGC09-0                                                                                                                                                                                                                        | 13 soil log.                                                      |         |                            |                                                          |                                                   |                                                        |                                |                    |                    |            |
| - 7<br>-<br>-<br>- 8<br>- 8<br>          | E.S.                                             | 1                                              |                                                   |                                                                       | 8.55 m - Trace quartz veins to a maximum widt                                                                                                                                                                                                       | n of 1 mm.                                                        |         |                            |                                                          |                                                   |                                                        |                                |                    |                    |            |
| 9<br>-<br>-<br>-<br>-<br>-<br>-<br>10    |                                                  |                                                |                                                   |                                                                       |                                                                                                                                                                                                                                                     |                                                                   |         |                            |                                                          |                                                   | ſ                                                      |                                |                    |                    |            |
|                                          |                                                  |                                                |                                                   |                                                                       | (Continued on next page,                                                                                                                                                                                                                            |                                                                   |         |                            |                                                          |                                                   |                                                        |                                |                    |                    |            |
| B                                        | G                                                |                                                | BGC                                               |                                                                       | BINEERING INC.<br>I sciences company                                                                                                                                                                                                                | Client: Terasen Gas                                               |         |                            |                                                          |                                                   |                                                        |                                |                    |                    |            |

| Geotechnical Investigation<br>Survey Method :Handheld GPS<br>Co-ordinates (m) : 462,365.E, 5,474,550.N<br>Ground Elevation (m) : 537.0<br>Datum : UTM NAD 83, Zone 11<br>Dip (degrees from horizontal) : 90<br>Direction : 0 |             |            |                  | stigatio                                                             | n Location : Shoreacre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Location : Shoreacres East Approach Drill Designation : Fraste MD-XL Drilling Contractor : Geotech Drilling Drill Method : Mud rotary Core : HQ Fluid : Polymer/Mud Casing : PQ Cased To (m) : 6.86 |               |                                                      | <b>Project No.</b> : 0093-076                                                                                                                             |                |    |         |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|---------|--|--|--|--|--|--|
|                                                                                                                                                                                                                              |             |            |                  | ndheld (<br>462,365<br><b>m)</b> : 533<br>33, Zone<br><b>horizon</b> | GPS         Drill Designation : F           b.E, 5,474,550.N         Drilling Contractor :           7.0         Drill Method : Mud m           e 11         Core : HQ           tal) : 90         Fluid : Polymer/Mud           Casing : PQ         Casing                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     |               |                                                      | Start Date : 02 Oct 09<br>Finish Date: 03 Oct 09<br>Final Depth of Hole : 19.3<br>Depth to Top of Rock (m) : 6.70<br>Logged by : MMB<br>Reviewed by : AJB |                |    |         |  |  |  |  |  |  |
|                                                                                                                                                                                                                              |             |            |                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     |               | Hydrau<br>Conduct<br>m/se                            |                                                                                                                                                           | UCS - MPa      |    |         |  |  |  |  |  |  |
| (m) r                                                                                                                                                                                                                        | Sample Type | Sample No. | Weathering Grade | Symbol                                                               | Lithologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                     | iment Details | 10 <sup>-8</sup> 10 <sup>-6</sup><br>Core<br>Recover | 50                                                                                                                                                        | 50 100 150 200 |    |         |  |  |  |  |  |  |
| 2                                                                                                                                                                                                                            |             |            |                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Instru                                                                                                                                                                                              | RQD<br>20 40  | %<br>60 80                                           | 20                                                                                                                                                        | R<br>0 40      | MR | ک<br>80 |  |  |  |  |  |  |
| 1<br>2<br>3<br>3<br>4<br>4<br>6<br>6<br>7                                                                                                                                                                                    |             | 3          |                  |                                                                      | <ul> <li>VOLCANICS (Dacite) - Dark blueish grey, fine grequigranular, strong (R4), fresh, no alteration</li> <li>10.65 m - Several calcite/quatrz filled joints to a rmm. Joints have an alpha angle of 65 degrees.</li> <li>11.50 m - One predominant joint set of 65 degree 0.75 m.</li> <li>12.06 m - 0.10 m wide fault with fault gouge and (rusting) of mafic minerals.</li> <li>13.15 m - 0.20 m wide zone of potassic alteration</li> <li>QUARTZ DIKE - Light grey to white, fine grained extremely strong (R5-R6), fresh, no alteration, R</li> </ul> | rained, slightly foliated,<br>maximum thickness of 1<br>es and spacing of 0.5 to<br>breccia. Weathering<br>n.                                                                                       |               |                                                      |                                                                                                                                                           |                |    |         |  |  |  |  |  |  |
| 18                                                                                                                                                                                                                           |             | 2          |                  |                                                                      | VOLCANICS (Dacite) - Dark grey, fine grained, s<br>eqiugranular, strong (R4), fresh, no alteration, R<br>One predominant joint set with an alpha angle of<br>of approximately 0.45 m.<br>End of Borehole @ 19.3 m<br>Notes:<br>1. Discontinued drilling as reached target depth.                                                                                                                                                                                                                                                                              | slightly foliated,<br>QD = 60 - 100%<br>65 degrees and spacing                                                                                                                                      | -             |                                                      |                                                                                                                                                           | -              |    |         |  |  |  |  |  |  |
| ⊥ر                                                                                                                                                                                                                           |             |            |                  |                                                                      | (Continued on next page)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                     |               |                                                      |                                                                                                                                                           |                |    |         |  |  |  |  |  |  |
|                                                                                                                                                                                                                              |             |            | GC               | ENG                                                                  | INEERING INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Client: Terasen Gas                                                                                                                                                                                 |               |                                                      |                                                                                                                                                           |                |    |         |  |  |  |  |  |  |

| Project: Shoreacres HDD<br>Geotechnical Investigation<br>Survey Method :Handheld GPS<br>Co-ordinates (m) : 462,365.E, 5,474,550.N<br>Ground Elevation (m) : 537.0<br>Datum : UTM NAD 83, Zone 11<br>Dip (degrees from horizontal) : 90<br>Direction : 0 |          |         |            | s HDD<br>stigatio                                                | DRILL HOLE 7                                                                                                                                                                                                                                       | DRILL HOLE # DH-BGC09-03<br>Location : Shoreacres East Approach<br>Drill Designation : Fraste MD-XL<br>Drilling Contractor : Geotech Drilling<br>Drill Method : Mud rotary<br>Core : HQ<br>Fluid : Polymer/Mud<br>Casing : PQ Cased To (m) : 6.86 |           |         | <b>Page 4 of 4</b><br><b>Project No.</b> : 0093-076                                                                                                       |                                     |  |  |    |              |                |     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|----|--------------|----------------|-----|--|
|                                                                                                                                                                                                                                                         |          |         |            | ndheld<br>462,365<br><b>n)</b> : 53<br>43, Zon<br><b>10rizor</b> | GPS         Drill Designation :           5.E, 5,474,550.N         Drilling Contractor           7.0         Drill Method : Mud           e 11         Core : HQ           mtal) : 90         Fluid : Polymer/Muc           Casing : PQ         Ca |                                                                                                                                                                                                                                                   |           |         | Start Date : 02 Oct 09<br>Finish Date: 03 Oct 09<br>Final Depth of Hole : 19.3<br>Depth to Top of Rock (m) : 6.70<br>Logged by : MMB<br>Reviewed by : AJB |                                     |  |  |    |              |                |     |  |
|                                                                                                                                                                                                                                                         |          |         | ade        |                                                                  |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   | ails      | C<br>10 | Hydrau<br>onduc<br>m/se                                                                                                                                   | ilic<br>ivity<br>c 10 <sup>-4</sup> |  |  | 50 | UCS -        | MPa<br>150     | 200 |  |
| h (m)                                                                                                                                                                                                                                                   | ple Type | ole No. | thering Gr | loc                                                              | Lithologic Description                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   | ument Det | R       | Core                                                                                                                                                      | y%_                                 |  |  | ●  | Poir<br>Tria | nt Loa<br>xial | d   |  |
| Deptl                                                                                                                                                                                                                                                   | Samp     | Samp    | Weat       | Symt                                                             |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   | Instru    | 2       | RQD                                                                                                                                                       | % _                                 |  |  | 20 | RMF          | ۹              | 5   |  |
| -21<br>-22<br>-23<br>-23<br>-24<br>-24<br>-24<br>-25<br>-26<br>-27<br>-27<br>-27<br>-28<br>-29                                                                                                                                                          |          |         |            |                                                                  | <ol> <li>No water table encountered.</li> <li>Drill bit hardness: 9 - 11, but changed to 12 - encountered quartz dike.</li> </ol>                                                                                                                  | - 14 when drilling                                                                                                                                                                                                                                |           |         |                                                                                                                                                           |                                     |  |  |    |              |                |     |  |
| -<br>-<br>—30-                                                                                                                                                                                                                                          |          |         |            |                                                                  |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   |           |         |                                                                                                                                                           |                                     |  |  |    |              |                |     |  |
|                                                                                                                                                                                                                                                         |          | E       | GC         | ENG                                                              | GINEERING INC.                                                                                                                                                                                                                                     | Client: Terasen Gas                                                                                                                                                                                                                               |           |         |                                                                                                                                                           |                                     |  |  |    |              |                |     |  |
# APPENDIX III LABORATORY TESTING RESULTS

N:\BGC\Projects\0093 Terasen\076 - Castlegar Shoreacres HDD 2009\05 - Reporting\Shoreacres\_HDD\_final.doc

**BGC ENGINEERING INC.** 























|      |                |        | Unconfir    | ned Co       | ompressi    | ive Stre           | ength of           | Intact  | Rock C               | ore Spe                                     | cimens               | ;             |            | Refe<br>ASTM D7012   | rence<br>2-07 Me | thod C    |
|------|----------------|--------|-------------|--------------|-------------|--------------------|--------------------|---------|----------------------|---------------------------------------------|----------------------|---------------|------------|----------------------|------------------|-----------|
| Pro  | ect No.:       |        | 09-1416-0   | 029/700      | )0          |                    |                    |         |                      |                                             |                      | Fail          | ure Mode   |                      |                  |           |
| Pro  | ect:           |        | Shoreacre   | s Projec     | ct # 0093-0 | 76                 |                    |         |                      | (1) Single diagonal shear plane (5) Conical |                      |               |            |                      |                  |           |
| Clie | nt:            |        | BGC Engi    | ,<br>neering | Ltd.        |                    |                    |         |                      | (2) Multi-vertical fracture (6) Spalling    |                      |               |            |                      |                  |           |
| Loc  | ation:         |        | Not Provid  | led          |             |                    |                    |         |                      | (3) Vertica                                 | al splitting         |               | (7) (      | Other                |                  |           |
| Lab  | ID             |        | 186         |              |             |                    |                    |         |                      | (4) Shear                                   | along foliati        | on / disconti | nuitv Note | e: (deg) measured fr | om core          | axis      |
|      |                |        | Wet         |              |             |                    |                    |         |                      | ()                                          | Dry                  | Maximum       | Stress     | (1-3)                | T                |           |
| No.  | Borehole       | Sample | Depth       | Dia          | Ht          | A                  | v                  | Mass    | Density              | w                                           | Density              | Load          | σ          | Rock Type            | Failu            | re Mode   |
|      | #              | #      | (m)         | (mm)         | (mm)        | (cm <sup>2</sup> ) | (cm <sup>3</sup> ) | (g)     | (Kg/M <sup>3</sup> ) | (%)                                         | (Kg/M <sup>3</sup> ) | (kN)          | (MPa)      |                      | Туре             | (deg)     |
| 1    | BGC09-01       | 1      | 31.86-32.16 | 60.70        | 123.05      | 28.94              | 356.08             | 968.80  | 2721                 | 0.11                                        | 2718                 | 214.20        | 74.02      | Not Provided         | 4                | N/A       |
| 2    | BGC09-01       | 2      |             |              | 1           |                    |                    | Sam     | ple Received B       | roken - Too S                               | Short To Test        |               |            |                      |                  | <u> </u>  |
| 3    | BGC09-01       | 3      | 50.25-50.55 | 60.85        | 122.06      | 29.08              | 354.96             | 972.70  | 2740                 | 0.09                                        | 2738                 | 293.10        | 100.79     | Not Provided         | 2                | N/A       |
| 4    | BGC09-01       | 4      | 71.90-72.20 | 60.94        | 123.06      | 29.17              | 358.93             | 997.00  | 2778                 | 0.20                                        | 2772                 | 233.40        | 80.02      | Not Provided         | 1/2              | ~16       |
| 5    | BGC09-02       | 1      | 24.01-24.30 | 60.88        | 122.91      | 29.11              | 357.79             | 975.40  | 2726                 | 0.19                                        | 2721                 | 104.60        | 35.93      | Not Provided         | 4                | N/A       |
| 6    | BGC09-02       | 2      | 34.39-34.65 | 60.80        | 122.72      | 29.03              | 356.30             | 1067.80 | 2997                 | 0.16                                        | 2992                 | 86.10         | 29.66      | Not Provided         | 4                | 24        |
| 7    | BGC09-02       | 3      | 58.67-58.97 | 60.83        | 123.47      | 29.06              | 358.83             | 988.50  | 2755                 | 0.07                                        | 2753                 | 282.00        | 97.03      | Not Provided         | 4                | 30        |
| 8    | BGC09-02       | 4      | 73.65-73.97 | 60.86        | 123.83      | 29.09              | 360.23             | 991.10  | 2751                 | 0.12                                        | 2748                 | 240.40        | 82.64      | Not Provided         | 4                | 33        |
| 9    | BGC09-02       | 5      | 38.60-38.90 | 60.80        | 124.17      | 29.03              | 360.51             | 995.10  | 2760                 | 0.05                                        | 2759                 | 278.70        | 95.99      | Not Provided         | 4                | 20        |
| 10   | BGC09-03       | 1      | 8.72        | 60.78        | 123.15      | 29.01              | 357.31             | 1057.10 | 2958                 | 0.08                                        | 2956                 | 585.00        | 201.63     | Not Provided         | 2/4              | ~27       |
| 11   | BGC09-03       | 2      | 18.25-18.50 | 60.87        | 121.61      | 29.10              | 353.89             | 1073.70 | 3034                 | 0.06                                        | 3032                 | 312.00        | 107.22     | Not Provided         | 4                | ~30       |
| 12   | BGC09-03       | 3      | 15.72       | 60.91        | 124.23      | 29.14              | 361.99             | 959.20  | 2650                 | 0.13                                        | 2646                 | 668.90        | 229.56     | Not Provided         | 7                | Shattered |
|      |                |        |             |              |             |                    |                    |         |                      |                                             |                      |               |            |                      |                  |           |
|      |                |        |             |              |             |                    |                    |         |                      |                                             |                      |               |            |                      |                  |           |
|      |                |        |             |              |             |                    |                    |         |                      |                                             |                      |               |            |                      |                  |           |
|      |                |        |             |              |             |                    |                    |         |                      |                                             |                      |               |            |                      |                  |           |
|      |                |        |             |              |             |                    |                    |         |                      |                                             |                      |               |            |                      |                  |           |
|      |                |        |             |              |             |                    |                    |         |                      |                                             |                      |               |            |                      |                  |           |
|      |                | G. Pat | ton         |              | O           | ctober 21          | , 2009             |         |                      | J. Ram                                      | nesch                |               |            | October 22, 20       | )09              |           |
|      | TESTED BY DATE |        |             |              |             |                    |                    | CHECK   | ED BY                |                                             |                      | DATE          |            |                      |                  |           |

| Gold         | ler<br>iates          |                                    |                                                                                                                                                                         |                                                            |                        | <b>Golder Associates Ltd Burnaby Lab</b><br>4280 Still Creek Drive<br>Burnaby, B.C. Canada V5C 6C6          |
|--------------|-----------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------|
| Un           | confined Co           | npressive                          | Strength of Inta                                                                                                                                                        | ict Rock Core Spec                                         | cimens                 | Reference                                                                                                   |
| Project No.: | 09-1416-0029/7        | 000                                |                                                                                                                                                                         | Borehole:                                                  | BGC09-0                | 11                                                                                                          |
| Project:     | Shoreacres Pro        | ject # 0093-0                      | 076                                                                                                                                                                     | Sample Number:                                             | 1                      |                                                                                                             |
| Location:    | Not Provided          |                                    |                                                                                                                                                                         | Depth (m):                                                 | 31.86-32. <sup>2</sup> | 16                                                                                                          |
| Client:      | BGC Engineerir        | ng Ltd.                            |                                                                                                                                                                         | Lab ID No:                                                 | 186                    |                                                                                                             |
| Max Lo       | Testing Results       | 3<br>14.20<br>4.02                 | Sample M<br>Diameter (mm)<br>Height (mm)<br>Area (cm <sup>2</sup> )                                                                                                     | easurements<br>60.70<br>123.05<br>28.94                    |                        |                                                                                                             |
| Pace R       | ate (kN/s)            | 2.50<br>Provided                   | Volume (cm <sup>3</sup> )<br>Mass (g)<br>Moisture Conten<br>Wet Density (Ka)                                                                                            |                                                            |                        | 33,16                                                                                                       |
| Туре:        | Failure Mode          |                                    | Dry Density (Kg/i                                                                                                                                                       | m <sup>3</sup> ) 2718                                      | PF<br>BC<br>DE         | ROJECT #         09-1416-0029/7000           DREHOLE         09-01 #1           EPTH(m)         31.86-32.16 |
| Degree       | s:* <u>N/A</u>        |                                    | <ul> <li>(1) Single diagon</li> <li>(2) Vertical fractu</li> <li>(3) Vertical splitti</li> <li>(4) Shear along fo</li> <li>(5) Conical</li> <li>(6) Spalling</li> </ul> | ial shear plane<br>ire(s)<br>ng<br>pliation /discontinuity |                        | DEFORE TEST                                                                                                 |
| core a       | axis.                 | Co                                 | (7) Other                                                                                                                                                               |                                                            |                        |                                                                                                             |
| Veining ir   | n multiple orientatio | ns.<br>rein pertain<br>ce only Inf | to the sample provi                                                                                                                                                     | ded only. This report                                      |                        | PROJECT # 09-1416-0029/7000<br>BOREHOLE 09-01 #1<br>DEPTH(m) 31.86-32.16                                    |
|              | Dottor                | provided                           | upon request.                                                                                                                                                           |                                                            |                        |                                                                                                             |
| G            | . Patton              |                                    | 2009 z1, 2009                                                                                                                                                           | J. Rames                                                   | n                      | Uctober 22, 2009                                                                                            |
| т            | ESTED BY              |                                    | DATE                                                                                                                                                                    | CHECKED B                                                  | Y                      | DATE                                                                                                        |

| Gold                                       | der<br>ciates                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         | (<br>2<br>1 | <b>Golder Associates Ltd Burnaby Lab</b><br>4280 Still Creek Drive<br>Burnaby, B.C. Canada V5C 6C6          |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------|
| Un                                         | confined Comp                                                                                                                                                | ressive Strength of Inta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | act Rock Core Spe                                                                                                                                                                       | cimens      | Reference                                                                                                   |
| Project No.:                               | 09-1416-0029/7000                                                                                                                                            | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Borehole:                                                                                                                                                                               | BGC09-0     | 1                                                                                                           |
| Project:                                   | Shoreacres Project                                                                                                                                           | # 0093-076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Number:                                                                                                                                                                          | 3           |                                                                                                             |
| Location:                                  | Not Provided                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depth (m):                                                                                                                                                                              | 50.25-50.5  | 5                                                                                                           |
| Client:                                    | BGC Engineering L                                                                                                                                            | .td.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lab ID No:                                                                                                                                                                              | 186         |                                                                                                             |
| Max Los<br>Stress o<br>Pace Ra<br>Litholog | Testing Results         ad (kN)       293.2         σ (MPa)       100.2         ate (kN/s)       0.50         gy       Not Prov         Failure Mode       2 | 10       Diameter (mm)         79       Area (cm²)         0       Volume (cm³)         0       Mass (g)         vided       Wet Density (Kg/n)         vided       Volume content         vided       Water content and the state of the st | leasurements<br>60.85<br>122.06<br>29.08<br>354.96<br>972.70<br>t (%) 0.09<br>/m <sup>3</sup> ) 2740<br>m <sup>3</sup> ) 2740<br>as received<br>lotes<br>as received<br>hal shear plane | PBD         | ROJECT # 09-1416-0029/7000<br>OREHOLE 09-01 #3<br>EPTH(m) 50.25-50.55                                       |
| Degrees<br>* Degre<br>core a               | s:* <u>N/A</u><br>ees measured with<br>axis.                                                                                                                 | (2) Vertical fractu<br>(3) Vertical splitti<br>(4) Shear along fo<br>(5) Conical<br>respect to<br>(6) Spalling<br>(7) Other<br>Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure(s)<br>ng<br>bliation /discontinuity                                                                                                                                                 |             |                                                                                                             |
| * The tes<br>constitutes                   | st data given herein<br>s a testing service<br>p                                                                                                             | pertain to the sample provi<br>only. Interpretation of the da<br>rovided upon request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ided only. This report<br>ata given here may be                                                                                                                                         | PBD         | ROJECT #         09-1416-0029/7000           OREHOLE         09-01 #3           EPTH(m)         50.25-50.55 |
| G                                          | . Patton                                                                                                                                                     | October 21, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J. Rames                                                                                                                                                                                | ch          | October 22, 2009                                                                                            |
| т                                          | ESTED BY                                                                                                                                                     | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHECKED B                                                                                                                                                                               | iΥ          | DATE                                                                                                        |

| Gold                     | ler<br>iates                          |                                         |                                                               |                                                 | <b>G</b><br>4:<br>B | older Associates Ltd Burnaby Lab<br>280 Still Creek Drive<br>urnaby, B.C. Canada V5C 6C6                        |
|--------------------------|---------------------------------------|-----------------------------------------|---------------------------------------------------------------|-------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| Un                       | confined Cor                          | npressive                               | Strength of Inta                                              | act Rock Core Spe                               | cimens              | Reference                                                                                                       |
| Project No.:             | 09-1416-0029/7                        | 000                                     |                                                               | Borehole:                                       | BGC09-01            | ASTW DT012-07 Wethou C                                                                                          |
| Project:                 | Shoreacres Proj                       | ect # 0093-0                            | )76                                                           | Sample Number:                                  | 4                   |                                                                                                                 |
| Location:                | Not Provided                          |                                         |                                                               | Depth (m):                                      | 71.90-72.20         | )                                                                                                               |
| Client:                  | BGC Engineerin                        | g Ltd.                                  |                                                               | Lab ID No:                                      | 186                 |                                                                                                                 |
|                          |                                       |                                         |                                                               | •                                               |                     |                                                                                                                 |
|                          | Testing Results                       |                                         | Sample N                                                      | leasurements                                    |                     | VE                                                                                                              |
| Max Loa                  | ad (kN) 23                            | 3.40                                    | Diameter (mm)                                                 | 60.94                                           |                     | the second se |
| Stress of                | τ (MPa) <b>8</b>                      | 0.02                                    | Height (mm)<br>Area (cm <sup>2</sup> )                        | 123.06<br>29.17                                 |                     | MAN                                                                                                             |
|                          | (iiii u)                              |                                         | Volume (cm <sup>3</sup> )                                     | 358.93                                          |                     |                                                                                                                 |
| Pace Ra                  | ate (kN/s)                            | ).50                                    | Mass (g)                                                      | 997.00                                          |                     | - 9                                                                                                             |
| Litholog                 | Not D                                 | rovidod                                 | Moisture Conten                                               | t(%) 0.20                                       |                     | 22.0                                                                                                            |
| Litholog                 | Lithology Not Provided                |                                         |                                                               | $m^{3}) \frac{2778}{2772}$                      |                     | 0.80                                                                                                            |
|                          |                                       |                                         | , , ( ,                                                       | <u> </u>                                        | 24                  | 71.9                                                                                                            |
|                          | Failure Mode                          |                                         |                                                               | lotes                                           | PR                  | 0.JECT # 09.1415.0029/7000                                                                                      |
|                          |                                       |                                         |                                                               |                                                 | BC                  | REHOLE 09-01 #4                                                                                                 |
|                          |                                       |                                         | - Water content                                               | as received                                     | DE                  | PTH(m) 71.90-72.20                                                                                              |
| Туре:                    | 1/2                                   |                                         | Mode:                                                         |                                                 |                     | DEEODE TEST                                                                                                     |
| Dogroo                   | o.*                                   |                                         | (1) Single diagor                                             | nai snear plane                                 |                     | BEFORE IESI                                                                                                     |
| Degree                   | s. ~10                                |                                         | (2) Vertical fraction                                         | ing                                             |                     |                                                                                                                 |
|                          |                                       |                                         | (4) Shear along fo                                            | bliation /discontinuity                         |                     |                                                                                                                 |
|                          |                                       |                                         | (5) Conical                                                   |                                                 |                     |                                                                                                                 |
| * Degre                  | es measured wi                        | th respect                              | to (6) Spalling                                               |                                                 |                     |                                                                                                                 |
| core a                   | axis.                                 |                                         | (7) Other                                                     |                                                 |                     |                                                                                                                 |
|                          |                                       | Со                                      | mments                                                        |                                                 |                     |                                                                                                                 |
| Sample re<br>Multiple v  | eceived in two piece<br>eining.       | ·s.                                     |                                                               |                                                 |                     | PROJECT # 09-1416-0029/7000                                                                                     |
|                          |                                       |                                         |                                                               |                                                 |                     | BOREHOLE         09-01 #4           DEPTH(m)         71.90-72.20                                                |
| * The tes<br>constitutes | t data given her<br>s a testing servi | ein pertain<br>ce only. Int<br>provided | to the sample prov.<br>erpretation of the da<br>upon request. | ided only. This report<br>ata given here may be |                     | AFTER TEST                                                                                                      |
| G                        | . Patton                              | 00                                      | ctober 21, 2009                                               | J. Rames                                        | ch                  | October 22, 2009                                                                                                |
| т                        | ESTED BY                              |                                         | DATE                                                          | CHECKED B                                       | Y                   | DATE                                                                                                            |

| Gold                     | ler<br>tiates                       |                                              |                                                               |                                                 |            | <b>Golder Associates Ltd Burnaby Lab</b><br>4280 Still Creek Drive<br>Burnaby, B.C. Canada V5C 6C6 |
|--------------------------|-------------------------------------|----------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|------------|----------------------------------------------------------------------------------------------------|
| Un                       | confined Co                         | mpressive                                    | Strength of Inta                                              | act Rock Core Spec                              | cimens     | Reference                                                                                          |
| Project No.:             | 09-1416-0029/                       | /7000                                        |                                                               | Borehole:                                       | BGC09-0    | 2                                                                                                  |
| Project:                 | Shoreacres Pr                       | oject # 0093-0                               | 076                                                           | Sample Number:                                  | 1          |                                                                                                    |
| Location:                | Not Provided                        |                                              |                                                               | Depth (m):                                      | 24.01-24.3 | 0                                                                                                  |
| Client:                  | BGC Engineer                        | ing Ltd.                                     |                                                               | Lab ID No:                                      | 186        |                                                                                                    |
|                          |                                     |                                              |                                                               |                                                 |            |                                                                                                    |
|                          | Testing Resul                       | ts                                           | Sample N                                                      | leasurements                                    |            | V 8                                                                                                |
| Max Loa                  | ad (kN)                             | 104.60                                       | Diameter (mm)                                                 | 60.88                                           |            |                                                                                                    |
| Stress of                | ס (MPa)                             | 35.93                                        | Area (cm <sup>2</sup> )                                       | 29.11                                           |            |                                                                                                    |
| Pace Ra                  | ate (kN/s)                          | 0.50                                         | Volume (cm <sup>3</sup> )<br>Mass (g)                         | 357.79<br>975.40                                |            | c s                                                                                                |
|                          |                                     | Dravidad                                     | Moisture Conten                                               | t (%) 0.19                                      |            | 5- 70                                                                                              |
| Litholog                 | Lithology Not Provided              |                                              |                                                               | $m^{3}$ ) 2721                                  |            | 5.85                                                                                               |
|                          |                                     |                                              |                                                               |                                                 | 2          | 30.00                                                                                              |
|                          | Failure Mode                        |                                              |                                                               | lotes                                           | PI         | ROJECT # 09-1416-0029/7000                                                                         |
|                          |                                     |                                              | - Water content :                                             | as received                                     | B          | OREHOLE 09-02 #1                                                                                   |
| Type:                    | 4                                   |                                              | Mode:                                                         |                                                 |            |                                                                                                    |
|                          |                                     |                                              | (1) Single diagor                                             | nal shear plane                                 |            | BEFORE TEST                                                                                        |
| Degrees                  | s:* <b>N/A</b>                      | <u>.</u>                                     | (2) Vertical fractu                                           | ure(s)                                          |            |                                                                                                    |
|                          |                                     |                                              | (3) Vertical splitti                                          | ing                                             |            |                                                                                                    |
|                          |                                     |                                              | (4) Snear along to                                            | Dilation /discontinuity                         |            |                                                                                                    |
| * Degre                  | es measured y                       | with respect (                               | (5) Conical                                                   |                                                 |            |                                                                                                    |
| core a                   | axis.                               | with respect t                               | (7) Other                                                     |                                                 |            |                                                                                                    |
|                          | _                                   |                                              |                                                               |                                                 |            |                                                                                                    |
|                          |                                     | Co                                           | mments                                                        |                                                 |            |                                                                                                    |
| Contains<br>Sample s     | small veins.<br>plit along small ve | ins.                                         |                                                               |                                                 |            |                                                                                                    |
|                          |                                     |                                              |                                                               |                                                 |            | PROJECT # 09-1416-0029/7000<br>BOREHOLE 09-02 #1<br>DEPTH(m) 24.01-24.30                           |
| * The tes<br>constitutes | t data given he<br>s a testing ser  | erein pertain<br>vice only. Inte<br>provided | to the sample provi<br>erpretation of the da<br>upon request. | ided only. This report<br>ata given here may be |            | AFTER TEST                                                                                         |
| G                        | . Patton                            | Oc                                           | tober 21, 2009                                                | J. Rameso                                       | ch         | October 22, 2009                                                                                   |
| т                        | ESTED BY                            |                                              | DATE                                                          | CHECKED B                                       | Y          | DATE                                                                                               |

| Gold                   | ler<br>iates        |                                      |                                                                                                                              |                                 |              | <b>Golder Associates Ltd Burnaby Lab</b><br>4280 Still Creek Drive<br>Burnaby, B.C. Canada V5C 6C6             |
|------------------------|---------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|----------------------------------------------------------------------------------------------------------------|
| Un                     | confined            | Compressiv                           | ve Strength of Inta                                                                                                          | act Rock Core Spe               | cimens       | Reference                                                                                                      |
| Project No.:           | 09-1416-00          | 029/7000                             |                                                                                                                              | Borehole:                       | BGC09-0      | ASTM D7012-07 Method C                                                                                         |
| Project:               | Shoreacres          | s Project # 0093                     | 3-076                                                                                                                        | Sample Number:                  | 2            | -                                                                                                              |
| Location:              | Not Provide         | ed                                   |                                                                                                                              | Depth (m):                      | 34.39-34.    | 65                                                                                                             |
| Client:                | BGC Engin           | neering Ltd.                         |                                                                                                                              | Lab ID No:                      | 186          |                                                                                                                |
|                        |                     |                                      |                                                                                                                              |                                 |              |                                                                                                                |
|                        | Testing Re          | esults                               | Sample N                                                                                                                     | leasurements                    |              | V 2                                                                                                            |
| Max Lo                 | ad (kN)             | 86.10                                | Diameter (mm)                                                                                                                | 60.80                           |              |                                                                                                                |
| Stress of              | o (MPa)             | 29.66                                | Area (cm <sup>2</sup> )                                                                                                      | 29.03                           |              | 0                                                                                                              |
| Pace R                 | ate (kN/s)_         | 0.50                                 | Volume (cm <sup>3</sup> )<br>Mass (g)                                                                                        | <u>356.30</u><br><u>1067.80</u> |              | 38                                                                                                             |
| Lithology Not Provided |                     | Wet Density (Kg,<br>Dry Density (Kg/ | $(\%) \frac{0.16}{2997}$<br>m <sup>3</sup> ) 2992                                                                            |                                 | South States |                                                                                                                |
|                        | Failure Mode        |                                      | Nuctor content                                                                                                               | lotes                           |              | PROJECT # 09-1416-0029/7000<br>BOREHOLE 09-02 #2<br>DEPETH(m) 24:30:34:55                                      |
| Туре:                  |                     | 4                                    | Mode:                                                                                                                        |                                 |              |                                                                                                                |
| Degree                 | s:*                 | 24                                   | <ul> <li>(1) Single diagor</li> <li>(2) Vertical fractu</li> <li>(3) Vertical splitti</li> <li>(4) Shoar along fr</li> </ul> | ure(s)<br>ing                   |              |                                                                                                                |
| * Degre<br>core a      | es measure<br>axis. | ed with respec                       | (5) Conical<br>(5) Conical<br>(6) Spalling<br>(7) Other                                                                      | Shation / discontinuity         |              |                                                                                                                |
| Large dis              | continuity ~24      | C° with respect to co                | comments<br>pre axis.                                                                                                        |                                 |              |                                                                                                                |
| * The tes              | t data giver        | n herein perta                       | in to the sample prov                                                                                                        | ided only. This report          |              | PROJECT #         09-1416-0029/7000           BOREHOLE         09-02 #2           DEPTH(m)         34.39-34.65 |
| constitutes            | s a testing s       | service only. Il<br>provide          | nterpretation of the da<br>d upon request.                                                                                   | ata given here may be           | e            | AFTER TEST                                                                                                     |
| G                      | . Patton            | (                                    | October 21, 2009                                                                                                             | J. Rames                        | ch           | October 22, 2009                                                                                               |
| т                      | ESTED BY            |                                      | DATE                                                                                                                         | CHECKED E                       | 3Y           | DATE                                                                                                           |

| Gold                     | ler<br>iates                      |                                  |                                              |                                                 | (<br>2<br>E    | Golder Associates Ltd Burnaby Lab<br>280 Still Creek Drive<br>Burnaby, B.C. Canada V5C 6C6                  |
|--------------------------|-----------------------------------|----------------------------------|----------------------------------------------|-------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------|
| Un                       | confined Co                       | ompressive                       | Strength of Inta                             | act Rock Core Spec                              | imens          | Reference                                                                                                   |
| Project No.:             | 09-1416-0029                      | )/7000                           |                                              | Borehole:                                       | BGC09-02       | 2                                                                                                           |
| Project:                 | Shoreacres Pi                     | roject # 0093-0                  | 076                                          | Sample Number:                                  | 3              |                                                                                                             |
| Location:                | Not Provided                      |                                  |                                              | Depth (m):                                      | 58.67-58.9     | 7                                                                                                           |
| Client:                  | BGC Enginee                       | ring Ltd.                        |                                              | Lab ID No:                                      | 186            |                                                                                                             |
|                          | u.                                |                                  |                                              |                                                 |                |                                                                                                             |
|                          | Testing Resu                      | lts                              | Sample N                                     | leasurements                                    |                |                                                                                                             |
| Max Lo                   | ad (kN)                           | 282.00                           | Diameter (mm)                                | 60.83                                           |                |                                                                                                             |
|                          |                                   |                                  | Height (mm)                                  | 123.47                                          |                | P                                                                                                           |
| Stress of                | ס (MPa)                           | 97.03                            | Area (cm <sup>2</sup> )                      | 29.06                                           |                | 8.0                                                                                                         |
| Pace R                   | ate (kN/s)                        | 0.50                             | Mass (g)                                     | 988.50                                          |                | 1 4 1 A                                                                                                     |
|                          | · · ·                             |                                  | Moisture Conten                              | t (%) 0.07                                      | and some       | A B                                                                                                         |
| Litholog                 | Lithology Not Provided            |                                  |                                              | $(m^3)$ 2755                                    |                | 3                                                                                                           |
|                          |                                   |                                  | Dry Density (Kg/                             | m) <u>2753</u>                                  | 20             |                                                                                                             |
|                          |                                   |                                  |                                              |                                                 |                | CE CON                                                                                                      |
|                          | Failure Mode                      | е                                | N                                            | lotes                                           | PR             | OJECT # 09-1416-0029/7000                                                                                   |
|                          |                                   |                                  |                                              |                                                 | BC             | DREHOLE         09-02 #3                                                                                    |
| Type                     | 4                                 |                                  | - Water content a                            | as received                                     | DE             | PIH(m) 58.67-58.97                                                                                          |
| l jiype.                 |                                   |                                  | (1) Single diagor                            | nal shear plane                                 |                | BEFORE TEST                                                                                                 |
| Degree                   | s:* <b>30</b>                     |                                  | (2) Vertical fractu                          | ure(s)                                          |                |                                                                                                             |
|                          |                                   |                                  | (3) Vertical splitti                         | ing                                             |                |                                                                                                             |
|                          |                                   |                                  | (4) Shear along fo                           | oliation /discontinuity                         |                |                                                                                                             |
| * Degre                  | os moosurod                       | with respect t                   | (5) Conical                                  |                                                 |                |                                                                                                             |
| core a                   | axis.                             | with respect t                   | (7) Other                                    |                                                 |                |                                                                                                             |
|                          |                                   |                                  |                                              |                                                 |                |                                                                                                             |
|                          |                                   | Со                               | mments                                       |                                                 |                |                                                                                                             |
| Variably f               | oliated with veins                |                                  |                                              |                                                 |                |                                                                                                             |
| * The tes<br>constitutes | t data given h<br>s a testing ser | erein pertain<br>vice only. Inte | to the sample provi<br>erpretation of the da | ided only. This report<br>ata given here may be | PF<br>BC<br>DE | ROJECT #         09-1416-0029/7000           DREHOLE         09-02 #3           EPTH(m)         58.67-58.97 |
|                          |                                   | provided (                       | upon request.                                |                                                 |                |                                                                                                             |
| G                        | . Patton                          | Oc                               | tober 21, 2009                               | J. Rameso                                       | ch             | October 22, 2009                                                                                            |
| Т                        | ESTED BY                          |                                  | DATE                                         | CHECKED B                                       | ſ              | DATE                                                                                                        |

| Gold                                       | der<br>ciates                                                                                                                                                                       |                                                                 |                                                                                                                                                                         |                                                             |            | <b>Golder Associates Ltd Burnaby Lab</b><br>4280 Still Creek Drive<br>Burnaby, B.C. Canada V5C 6C6        |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------|
| Un                                         | confined                                                                                                                                                                            | Compressive                                                     | Strength of Inta                                                                                                                                                        | act Rock Core Spe                                           | cimens     | Reference                                                                                                 |
| Project No.:                               | 09-1416-0                                                                                                                                                                           | 029/7000                                                        |                                                                                                                                                                         | Borehole:                                                   | BGC09-0    | 2                                                                                                         |
| Project:                                   | Shoreacre                                                                                                                                                                           | s Project # 0093-                                               | 076                                                                                                                                                                     | Sample Number:                                              | 4          |                                                                                                           |
| Location:                                  | Not Provid                                                                                                                                                                          | led                                                             |                                                                                                                                                                         | Depth (m):                                                  | 73.65-73.9 | )7                                                                                                        |
| Client:                                    | BGC Engi                                                                                                                                                                            | neering Ltd.                                                    |                                                                                                                                                                         | Lab ID No:                                                  | 186        |                                                                                                           |
| Max Los<br>Stress o<br>Pace Ra<br>Litholog | Testing Results         Max Load (kN)       240.40         Stress σ (MPa)       82.64         Pace Rate (kN/s)       0.50         Lithology       Not Provided         Failure Mode |                                                                 | Sample M<br>Diameter (mm)<br>Height (mm)<br>Area (cm <sup>2</sup> )<br>Volume (cm <sup>3</sup> )<br>Mass (g)<br>Moisture Conten<br>Wet Density (Kg/<br>Dry Density (Kg/ | leasurements                                                | PR         | ROJECT #         09-1416-0029/7000           REHOLE         09-02 #4           PTH(m)         73.65-73.97 |
| Type:<br>Degree                            | <br>S:*                                                                                                                                                                             | 4<br>33                                                         | Mode:<br>(1) Single diagor<br>(2) Vertical fractor<br>(3) Vertical splittir<br>(4) Shear along for<br>(5) Conical                                                       | nal shear plane<br>ure(s)<br>ing<br>pliation /discontinuity |            | BEFORE TEST                                                                                               |
| * Degre<br>core a                          | es measur<br>axis.                                                                                                                                                                  | red with respect                                                | to (6) Spalling<br>(7) Other<br>mments                                                                                                                                  |                                                             |            |                                                                                                           |
| Sample re<br>* The tes<br>constitutes      | eceived in two<br>t data give<br>s a testing                                                                                                                                        | o pieces.<br>In herein pertain<br>service only. Int<br>provided | to the sample prov<br>erpretation of the da<br>upon request.                                                                                                            | ided only. This report<br>ata given here may be             |            | PROJECT #     09-1416-0029/7000       BOREHOLE     09-02 #4       DEPTH(m)     73.65-73.97                |
| G                                          | . Patton                                                                                                                                                                            | 0                                                               | ctober 21, 2009                                                                                                                                                         | J. Rames                                                    | ch         | October 22, 2009                                                                                          |
| т                                          | ESTED BY                                                                                                                                                                            |                                                                 | DATE                                                                                                                                                                    | CHECKED B                                                   | Υ          | DATE                                                                                                      |

| Gold         | der<br>ciates          |                  |                       |                  |                          |           | Golder Associates Ltd Burnaby La<br>4280 Still Creek Drive<br>Burnaby, B.C. Canada V5C 6C6 |
|--------------|------------------------|------------------|-----------------------|------------------|--------------------------|-----------|--------------------------------------------------------------------------------------------|
| Un           | confined               | d Compre         | ssive Strength o      | of Inta          | ct Rock Core Spe         | cimens    | Reference                                                                                  |
| Project No.: | 09-1416-0              | 0029/7000        |                       |                  | Borehole:                | BGC09-    | 02                                                                                         |
| Project:     | Shoreacre              | es Project #     | 0093-076              |                  | Sample Number:           | 5         |                                                                                            |
| Location:    | Not Provid             | ded              |                       |                  | Depth (m):               | 38.60-38. | 90                                                                                         |
| Client:      | BGC Eng                | ineering Ltd     |                       |                  | Lab ID No:               | 186       |                                                                                            |
|              | 1                      |                  |                       |                  |                          |           |                                                                                            |
|              | Testing R              | Results          | Sam                   | nple M           | easurements              |           |                                                                                            |
| Max Lo       | ad (kN)                | 278.70           | Diameter (            | mm)              | 60.80                    |           |                                                                                            |
| Ctroop       |                        | 05.00            | Height (mn            | n)               | 124.17                   |           |                                                                                            |
| Stress       | 5 (MPa)                | 95.99            |                       | m <sup>3</sup> ) | 360.51                   |           | 2                                                                                          |
| Pace R       | ate (kN/s)             | 0.50             | Mass (g)              | ,                | 995.10                   |           | n sé                                                                                       |
|              |                        |                  | Moisture C            | onten            | t (%) <u>0.05</u>        |           | - 5.9                                                                                      |
| Litholog     | Lithology Not Provided |                  |                       | ty (Kg/          | $\binom{m^3}{2759}$ 2759 |           | 00 00                                                                                      |
|              |                        |                  | Dry Density           | y (itg/i         |                          | 2         | Be                                                                                         |
|              |                        |                  |                       |                  |                          |           | C. A. C.                                                                                   |
|              | Failure Mode           |                  |                       | N                | otes                     |           | PROJECT # 09-1416-0029/7000                                                                |
|              |                        |                  | - Water co            | ntent a          | as received              |           | BOREHOLE         09-02 #5           DEPTH(m)         38.60-38.90                           |
| Type:        |                        | 4                | Mode:                 |                  |                          |           |                                                                                            |
|              |                        |                  | (1) Single o          | diagon           | al shear plane           |           | BEFORE TEST                                                                                |
| Degree       | s:*                    | 20               | (2) Vertical          | fractu           | ıre(s)                   |           |                                                                                            |
|              |                        |                  | (3) Vertical          | splitti          | ng                       |           |                                                                                            |
|              |                        |                  | (4) Shear a           | long fo          | discontinuity            |           |                                                                                            |
| * Degre      | es measu               | red with re      | (5) Conical           | n n              |                          |           |                                                                                            |
| core a       | axis.                  |                  | (7) Other             | 9                |                          |           |                                                                                            |
|              |                        |                  |                       |                  |                          |           | - Chanter                                                                                  |
|              |                        |                  | Comments              |                  |                          |           | 10                                                                                         |
|              |                        |                  |                       |                  |                          |           | W I                                                                                        |
| Foliated ~   | -20° with resp         | pect to core axi | S.                    |                  |                          |           | 0.49                                                                                       |
|              |                        |                  |                       |                  |                          |           | -0-                                                                                        |
|              |                        |                  |                       |                  |                          |           |                                                                                            |
|              |                        |                  |                       |                  |                          |           | 0 0                                                                                        |
|              |                        |                  |                       |                  |                          |           |                                                                                            |
|              |                        |                  |                       |                  |                          |           | PRO IECT # 09-1416-0029/7000                                                               |
|              |                        |                  |                       |                  |                          | E         | BOREHOLE 09-02 #5                                                                          |
| * The tes    | t data give            | en herein p      | ertain to the sample  | e provi          | ded only. This report    |           | DEPTH(m) 38.60-38.90                                                                       |
| constitutes  | s a testing            | service on       | ly. Interpretation of | the da           | ata given here may be    |           | AFTER TEST                                                                                 |
|              |                        | pro              | vided upon request    |                  | [                        |           | Г                                                                                          |
| G            | . Patton               |                  | October 21, 200       | )9               | J. Rames                 | ch        | October 22, 2009                                                                           |
| Т            | ESTED BY               |                  | DATE                  |                  | CHECKED B                | Y         | DATE                                                                                       |

| Gole                                   | der<br>ciates                                                                     |                                                                                                    |                                                                                                                                                                         |                                                 |          | Golder Associates Ltd Burnaby Lab<br>4280 Still Creek Drive<br>Burnaby, B.C. Canada V5C 6C6 |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|---------------------------------------------------------------------------------------------|--|--|
| Un                                     | confined Compr                                                                    | essive Strength o                                                                                  | of Inta                                                                                                                                                                 | ect Rock Core Speci                             | mens     | Reference                                                                                   |  |  |
| Project No.:                           | 09-1416-0029/7000                                                                 |                                                                                                    |                                                                                                                                                                         | Borehole:                                       | BGC09-   | 03                                                                                          |  |  |
| Project:                               | Shoreacres Project                                                                | # 0093-076                                                                                         | 76 Sample Number:                                                                                                                                                       |                                                 |          |                                                                                             |  |  |
| Location:                              | Not Provided                                                                      |                                                                                                    | Depth (m):                                                                                                                                                              |                                                 |          | (Second depth number illegible                                                              |  |  |
| Client:                                | BGC Engineering Lt                                                                | d.                                                                                                 | Lab ID No:                                                                                                                                                              |                                                 |          |                                                                                             |  |  |
|                                        |                                                                                   |                                                                                                    |                                                                                                                                                                         |                                                 |          |                                                                                             |  |  |
|                                        | Testing Results                                                                   | Sar                                                                                                | nple M                                                                                                                                                                  | leasurements                                    |          | ~ ~                                                                                         |  |  |
| Max Lo                                 | ad (kN) 585.0                                                                     | 0 Diameter                                                                                         | (mm)                                                                                                                                                                    | 60.78                                           |          |                                                                                             |  |  |
| Stress                                 | σ (MPa) <b>201.6</b>                                                              | Height (mi<br>3 Area (cm <sup>2</sup>                                                              | m)<br>)                                                                                                                                                                 | 123.15<br>29.01<br>357.31                       |          | 8.1.2                                                                                       |  |  |
| Pace R                                 | ate (kN/s) 0.50                                                                   | Volume (c<br>Mass (g)<br>Moisture (                                                                | rm <sup>3</sup> )                                                                                                                                                       | 357.31<br>1057.10<br>+ (%) 0.08                 |          | 210                                                                                         |  |  |
| Litholog                               | gy <u>Not Prov</u>                                                                | ided Wet Dens<br>Dry Densit                                                                        | ity (Kg/<br>ty (Kg/i                                                                                                                                                    | (m <sup>3</sup> ) 2958<br>m <sup>3</sup> ) 2956 | 2        |                                                                                             |  |  |
|                                        | Failure Mode                                                                      |                                                                                                    | Notes                                                                                                                                                                   |                                                 |          | PROJECT # 09-1416-0029/7000<br>BOREHOLE 09-03 #1                                            |  |  |
| Туре:                                  | 2/4                                                                               | - Water co<br>Mode:                                                                                | ontent a                                                                                                                                                                | as received                                     |          | BEFORE TEST                                                                                 |  |  |
| Degree                                 | s:* <mark>~27</mark>                                                              | (1) Single<br>(2) Vertica<br>(3) Vertica<br>(4) Shear a                                            | <ul> <li>(1) Single diagonal shear plane</li> <li>(2) Vertical fracture(s)</li> <li>(3) Vertical splitting</li> <li>(4) Shear along foliation /discontinuity</li> </ul> |                                                 |          |                                                                                             |  |  |
| * Degre<br>core a                      | es measured with r<br>axis.                                                       | (5) Conica<br>espect to<br>(6) Spallin<br>(7) Other                                                | d<br>g                                                                                                                                                                  |                                                 |          |                                                                                             |  |  |
| Faint folia<br>* The tes<br>constitute | ation ~27° with respect to<br>st data given herein<br>s a testing service o<br>pr | Comments<br>o core axis.<br>pertain to the sample<br>only. Interpretation of<br>ovided upon reques | e provi<br>f the da<br>t.                                                                                                                                               | ided only. This report<br>ata given here may be |          |                                                                                             |  |  |
| G                                      | . Patton                                                                          | October 21, 20                                                                                     | 09                                                                                                                                                                      | J. Ramesch                                      | <u> </u> | October 22, 2009                                                                            |  |  |
| Т                                      | ESTED BY                                                                          | DATE                                                                                               |                                                                                                                                                                         | CHECKED BY                                      |          | DATE                                                                                        |  |  |

ſ

| Gold         | der<br>tiates               |                                    |                                      |                                                          |                                              |           | <b>Golder Associates Ltd Burnaby Lab</b><br>4280 Still Creek Drive<br>Burnaby, B.C. Canada V5C 6C6 |
|--------------|-----------------------------|------------------------------------|--------------------------------------|----------------------------------------------------------|----------------------------------------------|-----------|----------------------------------------------------------------------------------------------------|
| Un           | confine                     | d Compre                           | essive                               | Strength of Inta                                         | ct Rock Core Sp                              | ecimens   | Reference                                                                                          |
| Project No.: | 09-1416-0                   | 0029/7000                          |                                      |                                                          | Borehole:                                    | BGC09-    | 3                                                                                                  |
| Project:     | Shoreacr                    | es Project #                       | ¢ 0093-07                            | 6                                                        | Sample Number:                               | 2         |                                                                                                    |
| Location:    | Not Provi                   | ided                               |                                      |                                                          | Depth (m):                                   | 18.25-18. | 50                                                                                                 |
| Client:      | BGC Eng                     | gineering Lto                      | d.                                   |                                                          | Lab ID No:                                   | 186       |                                                                                                    |
|              |                             |                                    |                                      |                                                          |                                              | _         |                                                                                                    |
|              | Testing R                   | Results                            |                                      | Sample M                                                 | easurements                                  |           | ~ ~                                                                                                |
| Max Loa      | ad (kN)                     | 312.00                             | 0                                    | Diameter (mm)                                            | 60.87                                        |           |                                                                                                    |
| Stragg       | ~ (MDo)                     | 107.2                              | 2                                    | Height (mm)                                              | 121.61                                       |           | a a                                                                                                |
| Siless       |                             | 107.22                             | <u> </u>                             | Volume (cm <sup>3</sup> )                                | 353.89                                       |           | 2.2.5                                                                                              |
| Pace Ra      | ate (kN/s)                  | 0.50                               |                                      | Mass (g)                                                 | 1073.70                                      |           |                                                                                                    |
|              |                             |                                    | ما م ما                              | Moisture Content                                         | t (%) <u>0.06</u>                            |           | 5 3                                                                                                |
| Litholog     | Lithology Not Provided      |                                    |                                      | Wet Density (Kg/                                         | $m^{3}$ ) 3034<br>$m^{3}$ ) 3032             |           |                                                                                                    |
|              |                             |                                    |                                      | _ · y _ · · · · y (· · · g, ·                            | ,                                            |           |                                                                                                    |
|              | Eoiluro Ma                  |                                    |                                      |                                                          | lotos                                        |           |                                                                                                    |
|              | i alluie i                  | MODE                               |                                      |                                                          | lotes                                        | P         | ROJECT #         09-1416-0029/7000           ORFHOLE         09-03 #2                              |
|              |                             |                                    |                                      | - Water content a                                        | as received                                  | D         | EPTH(m) 18.25-18.50                                                                                |
| Туре:        |                             | 4                                  |                                      | Mode:                                                    |                                              |           | eternun in entretti dileret                                                                        |
|              |                             |                                    |                                      | (1) Single diagon                                        | al shear plane                               |           | BEFORE TEST                                                                                        |
| Degrees      | s:*                         | ~30                                |                                      | (2) Vertical fractu                                      | ire(s)                                       |           |                                                                                                    |
|              |                             |                                    |                                      | (3) Ventical splitti<br>(4) Shear along fo               | ng<br>bliation /discontinuity                |           |                                                                                                    |
|              |                             |                                    |                                      | (5) Conical                                              | ination / alcoontinuity                      |           |                                                                                                    |
| * Degre      | es measu                    | asured with respect to (6) Spallir |                                      | (6) Spalling                                             |                                              |           |                                                                                                    |
| core a       | axis.                       |                                    |                                      | (7) Other                                                |                                              |           | VE                                                                                                 |
|              |                             |                                    | Com                                  | iments                                                   |                                              |           | ť                                                                                                  |
| Foliated ~   | - 30° with re               | spect to core                      | axis.                                |                                                          |                                              |           |                                                                                                    |
|              |                             |                                    |                                      |                                                          |                                              |           | BOREHOLE         09-03 #2           DEPTH(m)         18.25-18.50                                   |
| * The tes    | st data give<br>s a testing | en herein p<br>g service ol<br>nrc | oertain to<br>nly. Inter<br>ovided u | o the sample provi<br>pretation of the da<br>pon request | aea only. This repor<br>ata given here may b |           | AFTER TEST                                                                                         |
| G            | . Patton                    |                                    | Octo                                 | ober 21, 2009                                            | J. Rame                                      | sch       | October 22, 2009                                                                                   |
| т            | ESTED BY                    |                                    |                                      | DATE                                                     |                                              | BY        | DATE                                                                                               |

| Gold                | der<br>ciates                                    |                                       |                                                                                                        |                                                                                                                     | <b>G</b><br>4:<br>B | older Associates Ltd Burnaby Lab<br>280 Still Creek Drive<br>urnaby, B.C. Canada V5C 6C6                                        |
|---------------------|--------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Un                  | confined                                         | d Compressi                           | ve Strength of Inta                                                                                    | act Rock Core Spe                                                                                                   | cimens              | Reference                                                                                                                       |
| Project No.:        | 09-1416-0                                        | 0029/7000                             |                                                                                                        | Borehole:                                                                                                           | BGC09-03            |                                                                                                                                 |
| Project:            | Shoreacre                                        | es Project # 009                      | 3-076                                                                                                  | Sample Number:                                                                                                      | 3                   |                                                                                                                                 |
| Location:           | Not Provid                                       | ded                                   |                                                                                                        | Depth (m):                                                                                                          | 15.72               | (Second depth number illegible                                                                                                  |
| Client:             | BGC Eng                                          | ineering Ltd.                         |                                                                                                        | Lab ID No:                                                                                                          | 186                 |                                                                                                                                 |
| Max Lo              | Testing R<br>ad (kN)                             | esults<br>668.90                      | Sample M<br>Diameter (mm)<br>Height (mm)                                                               | Measurements<br>60.91<br>124.23                                                                                     |                     | P                                                                                                                               |
| Stress of Pace Rate | ס (MPa)<br>ate (kN/s)<br>אין                     | 229.56<br>0.50<br>Not Provided        | Area (cm <sup>2</sup> )<br>Volume (cm <sup>3</sup> )<br>Mass (g)<br>Moisture Conten<br>Wet Density (Kg | $ \begin{array}{r}     29.14 \\     361.99 \\     959.20 \\     \text{it (\%)} 0.13 \\     /m^3) 2650 \end{array} $ |                     | 6.007.03<br>5.03                                                                                                                |
| Type:<br>Degree     | Failure Mode Type: 7 Degrees:* Shattered         |                                       | - Water content<br>Mode:<br>(1) Single diagor<br>(2) Vertical fractor                                  | Notes<br>as received<br>nal shear plane<br>ure(s)                                                                   | PI                  | ROJECT #         09-1416-0029/7000           OREHOLE         09-03 #3           EPTH(m)         15.72 - ?           BEFORE TEST |
| * Degre<br>core a   | * Degrees measured with respect to<br>core axis. |                                       |                                                                                                        | ing<br>oliation /discontinuity                                                                                      |                     |                                                                                                                                 |
| Foliated, *         | variable orier<br>t data give<br>s a testing     | ntation, one disco<br>en herein perta | Comments<br>ntinuity.<br>hin to the sample prov                                                        | ided only. This report<br>ata given here may be                                                                     |                     | PROJECT #       09-1416-00297000         DEDETHHOLE       09-33 #3         DEPTHH(m)       15.72.7                              |
|                     |                                                  | provide                               | ed upon request.                                                                                       |                                                                                                                     | <u> </u>            | •                                                                                                                               |
| G                   | . Patton                                         |                                       | October 21, 2009                                                                                       | J. Rames                                                                                                            | ch                  | October 22, 2009                                                                                                                |
| Т                   | ESTED BY                                         |                                       | DATE                                                                                                   | CHECKED E                                                                                                           | 3Y                  | DATE                                                                                                                            |

# APPENDIX IV GEOPHYSICS REPORT

N:\BGC\Projects\0093 Terasen\076 - Castlegar Shoreacres HDD 2009\05 - Reporting\Shoreacres\_HDD\_final.doc

**BGC ENGINEERING INC.** 

# BGC ENGINEERING INC. REPORT ON SEISMIC REFRACTION INVESTIGATION PROPOSED KOOTENAY RIVER OPTION B GAS PIPELINE CROSSING, CASTLEGAR AREA, B.C.

by

Kevin Payne, P.Eng.

Russell A. Hillman, P.Eng.

October, 2009

**PROJECT FGI-1102** 

Frontier Geosciences Inc. 237 St. Georges Avenue, North Vancouver, B.C., Canada V7L 4T4 Tel: 604.987.3037 Fax: 604.984.3074

## CONTENTS

|                    |                                 | page     |
|--------------------|---------------------------------|----------|
| 1. INTR            | ODUCTION                        | 1        |
| 2 THE 9            | EISMIC REEPACTION SURVEY        | METHOD 3 |
| 2. IIIE .<br>2.1   | Equipment                       |          |
| 2.1                | Survey Procedure                | 3        |
| 2.2                | Interpretive Method             | 5        |
| 2.5                | Interpretive Method             | 7        |
| 3. GEOP            | HYSICAL RESULTS                 | 5        |
| 3.1                | General                         | 5        |
| 3.2                | Discussion                      | 5        |
|                    |                                 |          |
| 4. LIMITATIONS     |                                 | 6        |
|                    |                                 | 7        |
| 5. RECOMMENDATIONS |                                 | 1        |
| ILL USTRATIONS     |                                 |          |
|                    | ILLOST                          |          |
|                    |                                 | location |
| Figure 1           | Survey Location Plan            | Page 2   |
| Figure 2           | Site Plan                       | Appendix |
| Figure 3           | Interpreted Depth Section SL-1  | Appendix |
| Figure 4           | Interpreted Depth Section SL-2  | Appendix |
| Figure 5           | Interpreted Depth Section SL-3  | Appendix |
| Figure 6           | Interpreted Depth Section SL-4  | Appendix |
| Figure 7           | Interpreted Depth Section SL-5A | Appendix |
| Figure 8           | Interpreted Depth Section SL-5B | Appendix |
| Figure 9           | Interpreted Depth Section SL-6  | Appendix |

#### 1. INTRODUCTION

In the period October 21 to October 25, 2009, Frontier Geosciences Inc. carried out a land and marine seismic refraction geophysical survey for BGC Engineering Inc. at a proposed Terasen Gas, Kootenay River crossing near Castlegar, B.C. The area of the proposed crossing near Shoreacres, is shown at 1:200,000 scale in the Survey Location Plan in Figure 1. A more detailed Site Plan illustrating the location of the proposed option B river crossing is presented at 1:2,500 scale in Figure 2. The location of the proposed crossing is very close to the most northern of three proposed crossing locations investigated last year by Frontier Geosciences Inc<sup>1</sup>.

The seismic refraction testing was carried out along six lines. Three lines were surveyed on the west side of the Kootenay river, two lines were surveyed on the east side, and one line was surveyed across the river along the proposed pipeline axis. Geophone spacing was 5 metres for the seismic lines conducted on land, where a combination of 24-channel and 48-channel spreads were used to profile the subsurface seismic layering. The marine seismic line across the river used two 24-channel spreads with 5 metre spacings. One seismic spread was placed on each side of the river, and seismic shots were taken about every ten metres across the river. A total of about 1340 metres of marine and land seismic refraction surveying was carried out in the investigation.

<sup>1</sup>BGC Engineering Inc, Report on Seismic Refraction, Bathymetric and Acoustic Sub-bottom Profiling Survey, Proposed Pipeline River Crossing, Kootenay River, B.C., July 2008, Project FGI-1021.



#### 2. THE SEISMIC REFRACTION SURVEY METHOD

## 2.1 Equipment

The seismic refraction investigation was carried out using two Geometrics, Geode, 24 channel, signal enhancement seismographs and Mark Products Ltd., 48 Hz geophones. Geophone intervals along the multicored seismic cables were maintained at 5 metres in order to produce high resolution data on subsurface layering. Energy input was provided by a seismic shotgun, firing blank, black powder, 8 gauge industrial shells into hand-excavated shotholes. Shot initiation or zero time was established by metal to metal contact of a striking hammer contacting the firing pin of the shotgun. For the marine seismic line, Gisco Seismic radio trigger links were used to trigger the two seismographs, which were located on both sides of the river.

# 2.2 Survey Procedure

For each spread, the seismic cable was stretched out in a straight line and the geophones implanted. Six separate 'shots' were then initiated: one at either end of the geophone array, two at intermediate locations along the seismic cable, and one off each end of the line to ensure adequate coverage of the basal layer. The shots were detonated individually and arrival times for each geophone were recorded digitally in the seismograph. Data recorded during field surveying operations was generally of good to excellent quality.

The overwater seismic refraction surveying was carried out with two land-based, fixed, geophone recording locations and a water-borne energy source. In operation, the "shooting" boat drifted in-line with the recording stations and the energy source was detonated. The recording stations were automatically triggered by a radio link between the shooting vessel and recording seismographs. Accurate positioning of the shooting vessel was determined by Electronic-Distance measuring (EDM) reflections recorded from one of the known shoreline positions. With numerous shot locations spanning the breadth of the river, detailed travel time data was established similar to land-based operations.

Throughout the survey, notes were recorded regarding seismic line positions in relation to topographic and geological features, and survey stations in the area. Relative elevations on the seismic lines were recorded by chain and inclinometer with absolute elevations taken from a digital elevation model provided by HinterLand Surveying and Geomatics Inc.

#### 2.3 Interpretive Method

The final interpretation of the seismic data was arrived at using the method of differences technique. This method utilises the time taken to travel to a geophone from shotpoints located to either side of the geophone. Using the total time, a small vertical time is computed which represents the time taken to travel from the refractor up to the ground surface. This time is then multiplied by the velocity of each overburden layer to obtain the thickness of each layer at that point.

## 3. GEOPHYSICAL RESULTS

## 3.1 General

The interpreted results for seismic lines SL-1 through SL-6 are shown at a scale of 1:750 in Figures 3 to 9, in the Appendix. Ground surface profiles along land-based refraction lines were determined by chain and inclinometer and refered to absolute elevations provided by Hinterland Surveying and Geomatics Inc.

# 3.2 Discussion

The results of the seismic data analysis indicate deep bedrock along the proposed pipeline with the interpreted bedrock surface rising steeply to the northeast, along seismic line SL-5.

The subsurface in the site area is generally underlain by four distinct velocity layers. The thin surficial layer with velocities of 250 m/s to 300 m/s is consistent with surface exposures and shallow shothole intersections of loose sand and silt or gravel.

Underlying the surficial layer is an intermediate layer with velocities varying from 600 m/s to 850 m/s. Ranging up to 14 metres in thickness, this layer has been correlated with stiff silt and dense sand and gravel. This layer pinches out uphill and to the northeast on seismic line SL-5.

The seismic lines are underlain by a thick intermediate overburden layer with velocities varying from 1310 m/s to 1990 m/s. With the possible exception of segments of line SL-5B, these velocities are interpreted as saturated sediments. The higher velocities in this layer are more indicative of coarse materials whereas the lower velocities are consistent with finer-grained sediments.

The basal layer with velocities ranging from 2900 m/s to 4845 m/s is the interpreted bedrock surface. The lower 2900 m/s and 3000 m/s bedrock velocities are evident in the southwest segment of the survey area, with the higher velocities to the northeast. Lower velocities may be indicative of greater fracturing or jointing in the rock mass or possibly a separate lithology such as sedimentary rock. The higher velocities may be indicative of massive rock with few fractures or joints in the rock. Alternately, the higher basal velocities to the northeast may be indicative of competent crystalline bedrock.

#### 4. LIMITATIONS

The depths to subsurface boundaries derived from seismic refraction surveys are generally accepted as accurate to within fifteen percent of the true depths to the boundaries. In some cases, unusual geological conditions may produce false or misleading data points with the result that computed depths to subsurface boundaries may be less accurate. In seismic refraction surveying difficulties with a 'hidden layer' or a velocity inversion may produce erroneous depths. The first condition is caused by the inability to detect the existence of a layer because of insufficient velocity contrasts or layer thicknesses. A velocity inversion exists when an underlying layer has a lower velocity than the layer directly above it. The interpreted depths shown on drawings are to the closest interface location, which may not be vertically below the measurement point if the refractor dip direction departs significantly from the survey line location.

In this survey, the substantial thicknesses of saturated sediments underlying the river and west landfall area resulted in limited data on the depths and configuration of the basal bedrock surface. The interpreted bedrock was at the limits of the seismic refraction spread lengths deployed and the shotgun energy source, resulting in limited data on the deeply-buried bedrock. As a result, bedrock depth errors may be greater than fifteen percent in some areas.

The results are interpretive in nature and are considered to be a reasonably accurate representation of existing subsurface conditions within the limitations of the seismic refraction method.

#### 5. **RECOMMENDATIONS**

The very thick, saturated sediments overlying the bedrock in the river and western land segment of the survey area resulted in limited data on the deeply-buried bedrock surface. As a result, the thicknesses of the sediments and depths to bedrock are based on limited seismic data providing less reliability on the interpretation. More accurate interpretation of the seismic data could be realized with the addition of deep drillholes put down to the bedrock surface. One hole should be placed at the west shoreline area along seismic line 1 with a second hole positioned on seismic line SL-3, on the peninsula of land separating the Slocan and Kootenay Rivers.

7

For: Frontier Geosciences Inc.

Kevin Payne, P.Eng.

Russell A. Hillman, P.Eng
















SEISMIC LINE SL-6

INSTR

| 200NF                  | 220NF                   | 240NF          | 260NF        |                  |        |
|------------------------|-------------------------|----------------|--------------|------------------|--------|
|                        |                         |                |              |                  |        |
|                        |                         |                |              |                  |        |
| +                      | +                       | +              | +            | — 460            |        |
| 24 25 26 27<br>V V V V | 28 2 <b>3</b> 0<br>V VV | 31 32 3<br>V V | 33435<br>VVV |                  |        |
|                        | 1450 m⁄s                |                | 1450 m       | — 450<br>7/s     |        |
| +                      | +                       | +              | +            | _ 440            |        |
|                        |                         |                |              |                  |        |
|                        |                         |                |              | — 430            |        |
|                        |                         |                | 1700 m       | n/s              |        |
| +                      | +<br>1700 m⁄s           | +              | +            | — 420            |        |
|                        |                         |                |              | (10)             |        |
|                        |                         |                | _            | — 4IU            |        |
| +                      | +                       | Ŧ              | +            | — 400            |        |
|                        |                         |                | 4000 m       | /s               |        |
|                        | 4000 m/s                |                |              | — 390            |        |
|                        |                         |                |              |                  |        |
| +                      | +                       | +              | +            | — 380            |        |
|                        |                         |                |              | - 320            |        |
|                        |                         |                |              |                  |        |
| +                      | +                       | +              | +            | — 360            |        |
|                        |                         |                |              |                  |        |
|                        |                         |                |              |                  |        |
|                        |                         |                |              |                  |        |
|                        |                         |                |              |                  |        |
| 200NE                  | 220NE                   | 240NE          | 260NE        |                  |        |
|                        |                         |                | BGC ENG      | INEERING INC.    |        |
|                        |                         | KO             | OTENAY RIVER | OPTION B HDD CRO | SSING  |
|                        |                         | S              | EISMIC REF   | RACTION SUR      | VEY    |
|                        |                         | INTE           | RPRETED DE   | EPTH SECTION     | SL-6   |
|                        |                         |                |              |                  |        |
| TRUMENT: GEOMETRICS (  | GEODE                   |                | IIEK DE      | SCALE 1:250      | ETG. 9 |
|                        |                         |                |              |                  |        |

Appendix F HDD GEOTECHNICAL INVESTIGATION FOR KOOTENAY RIVER BRIDGE AND KOOTENAY CANAL BRIDGE, CWMM MAR 10, 2009



# **TERASEN GAS INC.**

INSPECTION AND ASSESSMENT OF KOOTENAY RIVER BRIDGE AND KOOTENAY CANAL BRIDGE, NEAR NELSON, BC

Prepared for:

Terasen Gas Inc. Design Engineering - Pipelines 16705 Fraser Highway Surrey, B.C. V4N 0E8

Prepared by:

CWMM Consulting Engineers Ltd. 200-1854 Kirschner Road Kelowna, B.C., V1Y 4N6 Tel: 250-868-2308 Fax: 250-868-2374 Contact: Donald D. Bergman, P.Eng. Email: dbergman@cwmm.ca

March 10, 2010

K3357

# KOOTENAY RIVER BRIDGE AND KOOTENAY CANAL BRIDGE INSPECTION/ASSESSMENT REPORT

# TABLE OF CONTENTS

- 1.0 Introduction and Scope
- 2.0 Structural Description
- 3.0 Inspection
- 4.0 Gravity Assessment
- 5.0 Seismic Assessment
  - 5.1 Code Conformance
  - 5.2 Evaluated Components
- 6.0 Seismic Analysis Results
  - 6.1 Kootenay River Bridge
  - 6.2 Kootenay Canal Bridge
- 7.0 Summary and Conclusion

### 1.0 Introduction and Scope

CWMM Consulting Engineers Ltd. has been retained by Terasen Gas Inc. to carry out an inspection and seismic assessment of the Kootenay River Bridge and Kootenay Canal Bridge. The two structures are located along Blewett Road, approximately 2.5 km apart, and within approximately 3km of the intersection of Blewett Road and Highway 3A, near Bonnington Falls, which is between the cities of Nelson and Castlegar, B.C. Figure 1, below, shows the location of the two structures.



### Fig. 1 – Project Location

The goal of the assignment is to determine whether the two structures would be suitable to carry natural gas transmission pipelines along a new alternate route to the present route, which crosses the Kootenay River at Shoreacres via a large and aging aerial crossing. This report summarizes our findings with respect to the general condition of the structures, and the ability of each structure to carry a gas pipeline, from the perspective of vertical load, and seismic capacity.

### 2.0 Structural Description

### 2.1 Kootenay River Bridge

The Kootenay River Bridge was built in 1972. It is made up of 5 spans, consisting of 4

CWMM CONSULTING ENGINEERS LTD.

post-tensioned/prestressed concrete girder spans and one precast concrete girder span. The span lengths, as measured from north to south at deck level are 158', 156', 135', 154'-5" and 35'. The 3<sup>rd</sup> span (referred to as the "Island Structure") has two piers constructed on a midstream island, with a span that cantilevers out over the river at each end, picking up the adjoining river spans. The deck structure incorporates a pair of girders with a haunched cast-in place concrete deck, and steel guardrails.

The substructure is made up of solid concrete wall type piers, and seat type abutments. All foundations are spread footings.

There are pairs of fixed bearings at north abutment, south end of girders of span 2, and the north end of girders of span 3, and there are bundled reinforcing steel dowels at the north pier of the Island structure, as restrainers to resist lateral loads. Expansion bearings exist for both spans at the North Pier and South Pier, as well as at the South Island Pier. The south end span girders are just simply resting on the south pier and the rock bed at south end of the bridge with no fixed restraint.





### 2.2 Kootenay Canal Bridge

The Kootenay Canal Bridge was constructed in 1972, and includes 2 spans of steel "I" girders with a composite concrete deck and steel guard rail. The long span and the short span are 139' and 58' (length of deck) respectively. 5 steel girders in each span are connected to the substructure through fixed and expansion bearings.

The substructure is made up of one solid concrete wall type pier, and seat type abutments. All foundations are spread footings.



Figure 3. Kootenay Canal Bridge

#### 3.0 Inspection

The bridges were inspected by Jonathon Smith, Senior Technologist from our Creston Branch office, on April 30 and June 11, 2009. The bridge inspection component was not intended to be an exhaustive inspection of all elements, but rather a general visual inspection of the bridge condition, with observations focused on the structure's ability to support a suspended gas pipeline. In particular, verification of the key elements at bearing supports were a primary focus in terms of the structure's seismic resistance and measurements were taken to confirm sizes and dimensions as indicated on the available drawings.

#### 4.0 Gravity Assessment

A detailed gravity loading assessment has not been carried out. However from a gravity load perspective, it is not expected that there would be any concern for either structure's ability to carry the weight of the added pipeline. The pipe would likely be suspended from the deck using roller supports, and could accommodate the various expansion joints by way of a transverse loop at either end, if required.

#### 5.0 Seismic Assessment

### 5.1 Code Conformance

The Seismic assessment analysis is performed in accordance with the current Canadian Highway Bridge Code, CAN/CSA-S6-06. In particular, the method in Clause 4 is followed in the assessment of the bridges. Other pertinent clauses in the code are also followed to establish parameters such as member resistance capacity, resistance factors

CWMM CONSULTING ENGINEERS LTD.

and zonal acceleration ratio, etc.

### 5.2 Evaluated Components

The two bridges are both located, near Nelson, BC, an area of low seismicity, where the zonal acceleration ratio is 0.05. As a result, they are all in the Seismic Performance Zone 1, considering that these bridges are not categorized as Lifeline Bridges. The evaluation is based on the 1/475 year seismic event (10% chance of exceedence in 50 years).

According to Clause 4.11 of CAN/CSA-S6-06 code, no seismic evaluation of existing bridges is required for the bridges in seismic performance zone 1. Therefore, we have followed the provisions for new bridge design to assess the seismic capacities of these two bridges. The analysis requirements for the multi-span bridges in seismic performance zone 1 are as follows:

- 1) Connectors and restrainers between the superstructure and the substructures shall be designed for minimum force requirements (Clause 4.4.10.2).
- 2) Minimum support length requirements shall be satisfied at each abutment and piers (Clause 4.4.10.5).

### 6.0 Seismic Analysis Results

### 6.1 Kootenay River Bridge

The dead load of superstructure is calculated independently from the information provided on the record drawings and assumed to include 2" of asphalt as a future wearing surface on the deck. Based on the analysis results, dead load reactions and code required seismic loads at each supporting location, along with the lateral capacities of the restraining mechanisms are shown in the Table 1 and Table 2 for transverse and longitudinal directions respectively. For transverse restraint, the capacity of the bearing element is added to the capacity of any concrete shear keys. For longitudinal restraint at fixed bearing locations, only the bearing itself provides any resistance. Support lengths for the expansion locations are shown in Table 3.

|                                     |            |                    | Factored She     | ear Capaci      | ty (kips) | Depation | Seismic        |
|-------------------------------------|------------|--------------------|------------------|-----------------|-----------|----------|----------------|
| Location                            |            | Bearing or Rebar   | Bearing or Rebar | Block &<br>Wall | Total     | (kips)   | Load<br>(kips) |
| North Abut                          | Restrained | 2 - Conenco G24 24 | 94.0             | 145.7           | 239.7     | 688.0    | 137.6          |
| North Pier                          | Restrained | 4 - Conenco M24 24 | 105.2            | 167.8           | 273.0     | 1351.0   | 270.1          |
| South Pier                          | Restrained | 2 - Conenco M24 24 | 52.6             | 167.8           | 220.4     | 961.3    | 192.3          |
| North End of<br>Island<br>Structure | Restrained | 2 - Conenco G24 24 | 94.0             | 126.0           | 220.0     | 662.5    | 132.5          |
| South End of                        | Restrained | 2 - Conenco G24 24 | 94.0             | 126.0           | 220.0     | 673.3    | 134.7          |

### Table 1 Seismic Force and Restrainer Capacity (Transverse Direction)

#### Terasen Gas Inc. Kootenay River Bridge & Kootenay Canal Bridge, Near Nelson, BC Inspection and Assessment Report

Page 6

| Island<br>Structure                  | 14         |                   |        |   |        |      |       |
|--------------------------------------|------------|-------------------|--------|---|--------|------|-------|
| North Pier of<br>Island<br>Structure | Restrained | 72 - #11 rebars   | 1953.6 | 0 | 1953.6 | 1609 | 321.8 |
| South Pier of<br>Island<br>Structure | *          | 2 - Tetron SE 500 | *      | 0 |        | 1620 |       |

\* = information not available

### Table 2 Seismic Force and Restrainer Capacity (Longitudinal Direction)

|                                      |           |                    | Factored She              | ear Capacil     | ty (kips) | Popotion | Seismic        |
|--------------------------------------|-----------|--------------------|---------------------------|-----------------|-----------|----------|----------------|
| Location                             |           | Bearing or Rebar   | Bearing or<br>Reinforcing | Block &<br>Wall | Total     | (kips)   | Load<br>(kips) |
| North Abut                           | Fixed     | 2 - Conenco G24 24 | 94.0                      | 0.0             | 94.0      | 688.0    | 275.2          |
| North Pier                           | Expansion | 4 - Conenco M24 24 | 105.0                     | 0.0             | 105.0     | 1350.5   | 0.0            |
| South Pier                           | Expansion | 2 - Conenco M24 24 | 52.6                      | 0.0             | 52.6      | 961.3    | 0.0            |
| North End of<br>Island<br>Structure  | Fixed     | 2 - Conenco G24 24 | 94.0                      | 0.0             | 94.0      | 662.5    | 265.0          |
| South End of<br>Island<br>Structure  | Fixed     | 2 - Conenco G24 24 | 94.0                      | 0.0             | 94.0      | 673.3    | 269.3          |
| North Pier of<br>Island<br>Structure | Fixed     | 72 - #11 rebars    | 1953.6                    | 0.0             | 1953.6    | 1609.0   | 643.6          |
| South Pier of<br>Island<br>Structure | Expansion | 2 - Tetron SE 500  | *                         | 0.0             |           | 1620.0   | 0.0            |

\* = information not available

### Table 3 Support Length (at expansion locations)

| Span        | Location       | Provided (in) | Required (in) |
|-------------|----------------|---------------|---------------|
| Span 1      | S. End         | 24            | 11.6          |
| Span 2      | N. End         | 24            | 13.2          |
| Span 3      | S. End         | 24            | 13.4          |
| Island Span | S. Island Pier | 24            | 10.6          |
| S. End Span | N. End         | 16            | 10.5          |
| S. End Span | S. End         | 216           | 8.6           |

As shown in Table 1, the total factored transverse lateral resistances (capacities) are greater than the required seismic loads at all locations, based on the 1/475 year seismic event, although the bearing at the South Island Pier remains unknown. However, as shown in Table 2, the factored longitudinal resistances are all considerably smaller than

the required seismic loads at the fixed locations except at North Pier of the Island Structure. Deficiencies exist at the North Abutment, the north end of the Island Structure, and at the south end of the Island Structure, with capacities in the order of 1/3 of required loads. Bearings at expansion locations are not treated as restrained longitudinally. As shown in Table 3, support lengths are satisfactory with respect to code requirements for all expansion locations.

### 6.2 Kootenay Canal Bridge

As with the Kootenay River Bridge, the dead load of the superstructure is calculated independently from the information provided on the record drawings and is assumed to include 2" of asphalt as a future wearing surface on the deck. Based on the analysis results, total dead load reactions at each location along with the corresponding code required seismic forces are shown in the Table 4.

There are 5 stringers and 10 bearings in each span. Only 1 out of 10 bearings for a given span is fixed longitudinally which carries the total longitudinal seismic load that is calculated as 20% of total dead load of superstructure of that span. 2 out of 10 bearings (one each end) are fixed transversely, which in turn must be designed to carry transverse seismic loads which are calculated as 20% of the dead load reactions of the superstructure for that span.

Support lengths for the expansion locations are shown in Table 5.

| 1.0   |          |                    | Factored           | Total           | Seismic Load (kips) |        |  |  |  |
|-------|----------|--------------------|--------------------|-----------------|---------------------|--------|--|--|--|
| Span  | Location | Bearing            | Capacity<br>(kips) | Reaction (kips) | Long.               | Trans. |  |  |  |
| Long  | Pier     | CT-100 & 4 - CE-75 | 53.4 *             | 384.5           | 153.8               | 77.0   |  |  |  |
|       | Abut.    | CF-75 & 4 – CE-75  | 53.4 *             | 384.5           | N/A                 | 77.0   |  |  |  |
| Short | Pier     | CT-75 & 4 – CE-75  | 53.4 *             | 144.5           | 57.8                | 29.0   |  |  |  |
|       | Abut.    | CF-75 & 4 – CE-75  | 53.4 *             | 144.5           | N/A                 | 29.0   |  |  |  |

### Table 4 Seismic load and Bearing Capacity

\* = internal bearing information not available

### Table 5 Support Length (at expansion locations)

| Span  | Location | Provided (in) | Required (in) |
|-------|----------|---------------|---------------|
| Long  | N. Abut. | 24            | 11.9          |
| Long  | Pier     | 30            | 13.0          |
| Short | S. Abut. | 24            | 11.6          |
| Short | Pier     | 30            | 10.6          |

As shown in Table 4, the bearing capacities are unknown, since they are not indicated on the drawings, and were not available on any literature that has been obtained. As a result, the values indicated are an estimate, based on visible details.

CWMM CONSULTING ENGINEERS LTD.

By considering the capacities of the anchor bolts, it is possible to obtain an estimate of the bearing shear resistances. There are four 1" diameter "H.S." anchor bolts connecting the bearing to the substructure, and six 3/8" diameter "H.S." bolts connecting the bearing to the superstructure at each bearing location. The "H.S." terminology is assumed to represent "High Strength". The capacities of these connections are checked by conservatively assuming the grade of bolts as A307 since the materials of the bolts are not shown on the drawings. The results indicate that the capacities are 63.4 kips and 53.4 kips for the four 1" bolts and six 3/8" bolts respectively. Therefore, the bearing capacity is taken as 53.4 kips, which does not meet the code requirements for longitudinal loading for either span segment at the pier, nor for transverse loading at the south abutment. As a result, the bridge can only carry approximately 1/3 of the required loading, based on the 1/475 year seismic event.

Table 5 indicates that all provided support lengths are substantially greater than required by the code.

### 7.0 Summary and Conclusion

An inspection and seismic assessment has been carried out for two bridge structures which are owned and maintained by the City of Nelson, including the Kootenay River Bridge and Kootenay Canal Bridge. It is considered that the two structures would be satisfactory from a gravity perspective but not from a seismic perspective, to carry the proposed new pipeline. To satisfy the seismic requirements of the bridge code, based on the 1/475 year seismic event, it would be necessary to retrofit the connections at piers and abutments in the longitudinal and transverse directions, as shown in the table below. (\* = not confirmed)

| Kootenay River Brid            | dge       | Kootenay Canal Bridge |                |  |  |  |  |  |  |
|--------------------------------|-----------|-----------------------|----------------|--|--|--|--|--|--|
| Location                       | Direction | Location              | Direction      |  |  |  |  |  |  |
| North Abut                     | Long.     | Long Span at Pier     | Long. & Trans. |  |  |  |  |  |  |
| North End of Island Structure  | Long.     | Short Span at Pier    | Long.          |  |  |  |  |  |  |
| South End of Island Structure  | Long.     | Long Span at Abut.    | Trans.         |  |  |  |  |  |  |
| South Pier of Island Structure | Trans. *  |                       |                |  |  |  |  |  |  |

Seismic retrofitting measures would consist of a combination of measures depending on the precise bearing condition. Transverse restraint can be upgraded by adding concrete shear keys or brackets to the pier or abutment top, which in turn bear against the girder or diaphragm. Longitudinal elements generally consist of bar or cable restrainers, attached through abutment end walls, and to brackets attached to the girders.

Based on preliminary design of upgrading measures, our rough cost estimate for upgrading of each of these structures to meet the 1/475 year event are:

Kootenay River Bridge:\$360,000Kootenay Canal Bridge:\$290,000

CWMM CONSULTING ENGINEERS LTD.

#### **Terasen Gas Inc.** Kootenay River Bridge & Kootenay Canal Bridge, Near Nelson, BC Inspection and Assessment Report

It should be noted that this assessment is preliminary in nature, and has been based on information at hand to date. A more detailed assessment and design would be required to provide a more accurate assessment of the cost of retrofitting.

We trust this is satisfactory to you. Should you have any questions, please contact the undersigned.

Report Prepared by:

### **CWMM** Consulting Engineers Ltd.



Greg Wang, Ph.D., P.Eng.

Reviewed by:



Don D. Bergman, M.Eng., P.Eng., Principal

Appendix G
PRELIMINARY MONTE CARLO ANALYSIS RESULTS



# Kootenay River Crossing (Shoreacres) Upgrade Project Appendix G – Preliminary Monte Carlo Analysis Results

# Appendix H FINANCIAL SCHEDULES

# **Appendix H**

Financial Schedules - Shoreacres Kootney River CPCN Filing

### **TABLE OF CONTENTS**

- 1 Financial Assumtions Summary Large Angle HDD\_Class 3 estimate.
- 2 Table 1 Incremental Revenue Requirement Summary showing the levelized rate impact.
- 3 Table 2 Rate Base Summary
- 4 Table 3 Discounted/Net Cash Flow Summary
- 5 Financial Assumtions Summary Large Angle HDD\_Class 5 estimate.
- 6 Table 1 Incremental Revenue Requirement Summary showing the levelized rate impact.
- 7 Table 2 Rate Base Summary
- 8 Table 3 Discounted/Net Cash Flow Summary
- 9 Financial Assumtions Summary TP Reroute\_Class 5 estimate.
- 10 Table 1 Incremental Revenue Requirement Summary showing the levelized rate impact.
- 11 Table 2 Rate Base Summary
- 12 Table 3 Discounted/Net Cash Flow Summary
- 13 Financial Assumtions Summary IP Reroute\_Class 5 estimate.
- 14 Table 1 Incremental Revenue Requirement Summary showing the levelized rate impact.
- 15 Table 2 Rate Base Summary
- 16 Table 3 Discounted/Net Cash Flow Summary

Shoreacres - Kootenay River CPCN Filing

Cost of Service Model Large Angle HDD Class 3 estimate - Financial Assumptions

#### 1 Project Details and Capital Costs

- a. For details on the Capital costs, refer to the Table 6-1 of the Application.
- b. Plant in Service date is assumed to be July 1. 2011.
- c. Plant additions are assumed to enter the rate base starting on July 1, 2011.

#### 2 Capital Structure and AFUDC Rate

| a. | ROE Rate               | 9.50%  |
|----|------------------------|--------|
| b. | Equity Ratio           | 40.00% |
| c. | LTD Rate               | 6.95%  |
| d. | LTD Ratio              | 58.37% |
| e. | STD Rate               | 4.50%  |
| f. | STD Ratio              | 1.63%  |
| g. | AFUDC Rate             | 6.90%  |
| h. | Nominal WACC after Tax | 6.90%  |

h. Nominal WACC after Tax

The discounted cash flow analysis and the Net Present Value analysis of the incremental annual revenue requirement are done for both 60 and 25 years using the discount factors of 6.9% (After tax WACC) and 10%.

#### 3 Income Tax and Inflation Rates

- a. The combined Federal and Provincial Income tax is assumed to be 26.5% for 2011 and to be 25% from 2012 onwards.
- b. The inflation is assumed to be 2% per year.

#### 4 Capital Cost Allowance / Eligible Capital Expenditures

- a. Transmission Pipe (CCA Class 49) 8%
- b. Land Rights 7%

#### 5 Operating and Maintenance Costs

- a. The HDD option incurs O&M savings, which are escalated using the assumed inflation factor of 2%. However, for the purposes of this model, no incremental O&M savings have been assumed as these savings are estimated to be materially small (about \$3,000 per annum).
- b. Capitalized Overhead Rate is assumed to be 14%. For tax purposes, the Capitalized Overhead rate is assumed to be 8%.

#### 6 Property Tax

a. The option selected for the Project (i.e. HDD) incurs Property tax savings of about \$1,800 per annum. However, for the purposes of this model, no incremental property tax savings have been assumed as these savings are estimated to be materially small.

#### 7 Depreciation Rate

- a. The Depreciation rate for the pipe is assumed to be 1.63%
- b. For the puposes of depreciating the Capitalized Overheads, the average depreciation rate of 2.54% is assumed.

#### 8 Deferred Charges

Terasen has proposed to create three non-rate base deferral accounts (discussed below), which will be added to rate base starting in 2012:

- a. Gains and Losses on Asset Disposition Deferral Account created to capture the gain/loss on the book value of the asset being removed/disposed. This account is assumed to be amortized over a period of 3 years starting in 2012, although the actual amortization period will be determined as part of the Company's next Revenue Requirement Application.
- b. Removal Cost Deferral Account cretaed to capture the removal costs associated with the asset being removed. This account attracts AFUDC and is assumed to be amortized over a period of 3 years starting in 2012, although the actual amortization period will be determined as part of the Company's next Revenue Requirement Application.
- c. The Kootenay River Cost of Service Deferral Account deferral account to capture the cost of service related to plant in service, consisting of depreciation expense, income taxes and earned return. The balance in this account would be transferred to the rate base in 2012 with three years amortization period.

#### 9 Energy/Volumes

a. For the purposes of calculating the rate impact, Terasen has considered TGI Volumes including the sales and non-bypass transportation customers. The growth rate of 0.25% is assumed starting from the year 2015.

#### Appendix H - Financial Schedules Table 1

#### Terasen Gas Inc.

#### Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_Large Angle HDD Class 3 estimate - Revenue Requirement Summary (\$000's)

|    | Year (2011-2030)                        | 2011  | 2012    | 2013    | 2014    | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  | 2026  | 2027  | 2028  | 2029  | 2030  |
|----|-----------------------------------------|-------|---------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Operating & Maintenance                 | \$0   | \$0     | \$0     | \$0     | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2  | Property & Other Taxes                  | 0     | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3  | Depreciation & Amortization             | 56    | 677     | 677     | 677     | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   |
| 4  | Income Tax                              | (49)  | 127     | 135     | 141     | (38)  | (27)  | (17)  | (7)   | 1     | 9     | 16    | 22    | 28    | 33    | 37    | 41    | 45    | 48    | 51    | 54    |
| 5  | Return on Equity                        | 132   | 317     | 291     | 266     | 251   | 246   | 242   | 238   | 234   | 229   | 225   | 221   | 217   | 212   | 208   | 204   | 200   | 195   | 191   | 187   |
| 6  | Interest                                | 144   | 344     | 316     | 289     | 272   | 268   | 263   | 258   | 254   | 249   | 245   | 240   | 235   | 231   | 226   | 222   | 217   | 212   | 208   | 203   |
| 7  | Other Revenue                           | (283) | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8  | Total Revenue Requirement - Incremental | \$0   | \$1,466 | \$1,420 | \$1,372 | \$596 | \$599 | \$600 | \$601 | \$600 | \$599 | \$597 | \$595 | \$591 | \$588 | \$583 | \$579 | \$573 | \$568 | \$562 | \$556 |
| 9  |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 10 | Total Volume (PJ)                       | 157.7 | 158.1   | 158.4   | 158.8   | 159.2 | 159.6 | 160.0 | 160.4 | 160.8 | 161.2 | 161.6 | 162.0 | 162.4 | 162.8 | 163.2 | 163.6 | 164.0 | 164.4 | 164.8 | 165.2 |
| 11 | Rate Impact (\$/GJ)                     | 0.000 | 0.009   | 0.009   | 0.009   | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 | 0.003 |
|    |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

#### **Revenue Requirement Summary (continued)**

|    | Year (2031-2050)                        | 2031  | 2032  | 2033  | 2034  | 2035  | 2036  | 2037  | 2038  | 2039  | 2040  | 2041  | 2042  | 2043  | 2044  | 2045  | 2046  | 2047  | 2048  | 2049  | 2050  |
|----|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Operating & Maintenance                 | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2  | Property & Other Taxes                  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3  | Depreciation & Amortization             | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   |
| 4  | Income Tax                              | 56    | 58    | 60    | 61    | 62    | 63    | 64    | 65    | 65    | 66    | 66    | 66    | 66    | 65    | 65    | 65    | 64    | 64    | 63    | 63    |
| 5  | Return on Equity                        | 183   | 179   | 174   | 170   | 166   | 162   | 157   | 153   | 149   | 145   | 140   | 136   | 132   | 128   | 123   | 119   | 115   | 111   | 106   | 102   |
| 6  | Interest                                | 198   | 194   | 189   | 185   | 180   | 175   | 171   | 166   | 162   | 157   | 152   | 148   | 143   | 139   | 134   | 129   | 125   | 120   | 116   | 111   |
| 7  | Other Revenue                           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8  | Total Revenue Requirement - Incremental | \$549 | \$542 | \$535 | \$527 | \$520 | \$512 | \$504 | \$496 | \$487 | \$479 | \$470 | \$461 | \$452 | \$443 | \$434 | \$425 | \$416 | \$406 | \$397 | \$387 |
| 9  |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 10 | Total Volume (PJ)                       | 165.7 | 166.1 | 166.5 | 166.9 | 167.3 | 167.7 | 168.2 | 168.6 | 169.0 | 169.4 | 169.8 | 170.3 | 170.7 | 171.1 | 171.5 | 172.0 | 172.4 | 172.8 | 173.3 | 173.7 |
| 11 | Rate Impact (\$/GJ)                     | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 |
|    |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

#### Revenue Requirement Summary (continued)

|    | Year (2051-2070)                        | 2051  | 2052  | 2053  | 2054  | 2055  | 2056  | 2057  | 2058  | 2059  | 2060  | 2061  | 2062  | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  | 2070  |
|----|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Operating & Maintenance                 | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2  | Property & Other Taxes                  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3  | Depreciation & Amortization             | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   | 112   |
| 4  | Income Tax                              | 62    | 61    | 60    | 59    | 58    | 58    | 57    | 55    | 54    | 53    | 52    | 51    | 50    | 49    | 48    | 46    | 45    | 44    | 43    | 41    |
| 5  | Return on Equity                        | 98    | 94    | 89    | 85    | 81    | 77    | 72    | 68    | 64    | 60    | 55    | 51    | 47    | 43    | 38    | 34    | 30    | 26    | 21    | 17    |
| 6  | Interest                                | 106   | 102   | 97    | 92    | 88    | 83    | 79    | 74    | 69    | 65    | 60    | 56    | 51    | 46    | 42    | 37    | 33    | 28    | 23    | 19    |
| 7  | Other Revenue                           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8  | Total Revenue Requirement - Incremental | \$378 | \$368 | \$358 | \$349 | \$339 | \$329 | \$319 | \$309 | \$299 | \$290 | \$280 | \$270 | \$260 | \$250 | \$239 | \$229 | \$219 | \$209 | \$199 | \$189 |
| 9  |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 10 | Total Volume (PJ)                       | 174.1 | 174.6 | 175.0 | 175.4 | 175.9 | 176.3 | 176.8 | 177.2 | 177.7 | 178.1 | 178.5 | 179.0 | 179.4 | 179.9 | 180.3 | 180.8 | 181.2 | 181.7 | 182.1 | 182.6 |
| 11 | Rate Impact (\$/GJ)                     | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
|    |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

|    | Revenue Requirement NPV (\$M) | 6.9% | 10.0% |
|----|-------------------------------|------|-------|
| 12 | 60 Years (2011-70)            | 10.1 | 7.8   |
| 13 | 25 Years (2011-35)            | 9.1  | 7.4   |

|    | Level Rate Impact (\$/GJ) | 6.9%   | 10.0%  |
|----|---------------------------|--------|--------|
| 14 | 60 Years (2011-70)        | 0.0044 | 0.0048 |
| 15 | 25 Years (2012-36)        | 0.0048 | 0.0051 |

#### Appendix H - Financial Schedules Table 2

#### Terasen Gas Inc.

#### Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_Large Angle HDD Class 3 estimate - Rate Base and Plant in Service Summary (\$M)

| Yea           | ar (2011-2030)                                      | 2011                | 2012                | 2013                       | 2014                | 2015                | 2016                | 2017                       | 2018                | 2019                | 2020                       | 2021                | 2022                       | 2023                       | 2024                | 2025                | 2026                       | 2027                       | 2028                       | 2029                       | 2030  |
|---------------|-----------------------------------------------------|---------------------|---------------------|----------------------------|---------------------|---------------------|---------------------|----------------------------|---------------------|---------------------|----------------------------|---------------------|----------------------------|----------------------------|---------------------|---------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------|
| 1 Rat         | te Base Summary (\$M)                               |                     |                     |                            |                     |                     |                     |                            |                     |                     |                            |                     |                            |                            |                     |                     |                            |                            |                            |                            |       |
| 2             | Plant                                               | \$3.5               | \$7.1               | \$7.1                      | \$7.1               | \$7.1               | \$7.1               | \$7.1                      | \$7.1               | \$7.1               | \$7.1                      | \$7.1               | \$7.1                      | \$7.1                      | \$7.1               | \$7.1               | \$7.1                      | \$7.1                      | \$7.1                      | \$7.1                      | \$7.1 |
| 3             | Accumulated Depreciation                            | (0.0)               | (0.1)               | (0.2)                      | (0.3)               | (0.4)               | (0.6)               | (0.7)                      | (0.8)               | (0.9)               | (1.0)                      | (1.1)               | (1.2)                      | (1.3)                      | (1.5)               | (1.6)               | (1.7)                      | (1.8)                      | (1.9)                      | (2.0)                      | (2.1) |
| 4             | Deferred Charges - (mid year)                       | 0.0                 | 1.4                 | 0.8                        | 0.3                 | 0.0                 | 0.0                 | 0.0                        | 0.0                 | 0.0                 | 0.0                        | 0.0                 | 0.0                        | 0.0                        | 0.0                 | 0.0                 | 0.0                        | 0.0                        | 0.0                        | 0.0                        | 0.0   |
| 5             | Working Capital                                     | (0.0)               | (0.0)               | (0.0)                      | (0.0)               | (0.0)               | (0.0)               | (0.0)                      | (0.0)               | (0.0)               | (0.0)                      | (0.0)               | (0.0)                      | (0.0)                      | (0.0)               | (0.0)               | (0.0)                      | (0.0)                      | (0.0)                      | (0.0)                      | (0.0) |
| 6             | Total Rate Base                                     | \$3.5               | \$8.3               | \$7.7                      | \$7.0               | \$6.6               | \$6.5               | \$6.4                      | \$6.3               | \$6.1               | \$6.0                      | \$5.9               | \$5.8                      | \$5.7                      | \$5.6               | \$5.5               | \$5.4                      | \$5.3                      | \$5.1                      | \$5.0                      | \$4.9 |
| 7 Pla         | ant Summary (\$M)                                   |                     |                     |                            |                     |                     |                     |                            |                     |                     |                            |                     |                            |                            |                     |                     |                            |                            |                            |                            |       |
| 8             | Opening Balance                                     | \$0.0               | \$7.1               | \$7.1                      | \$7.1               | \$7.1               | \$7.1               | \$7.1                      | \$7.1               | \$7.1               | \$7.1                      | \$7.1               | \$7.1                      | \$7.1                      | \$7.1               | \$7.1               | \$7.1                      | \$7.1                      | \$7.1                      | \$7.1                      | \$7.1 |
| 9             | Additions                                           | 7.1                 | 0.0                 | 0.0                        | 0.0                 | 0.0                 | 0.0                 | 0.0                        | 0.0                 | 0.0                 | 0.0                        | 0.0                 | 0.0                        | 0.0                        | 0.0                 | 0.0                 | 0.0                        | 0.0                        | 0.0                        | 0.0                        | 0.0   |
| 10            | Ending Balance                                      | 7.1                 | 7.1                 | 7.1                        | 7.1                 | 7.1                 | 7.1                 | 7.1                        | 7.1                 | 7.1                 | 7.1                        | 7.1                 | 7.1                        | 7.1                        | 7.1                 | 7.1                 | 7.1                        | 7.1                        | 7.1                        | 7.1                        | 7.1   |
| 11            | Net Plant in Service                                | \$3.5               | \$7.1               | \$7.1                      | \$7.1               | \$7.1               | \$7.1               | \$7.1                      | \$7.1               | \$7.1               | \$7.1                      | \$7.1               | \$7.1                      | \$7.1                      | \$7.1               | \$7.1               | \$7.1                      | \$7.1                      | \$7.1                      | \$7.1                      | \$7.1 |
| 9<br>10<br>11 | Additions<br>Ending Balance<br>Net Plant in Service | 7.1<br>7.1<br>\$3.5 | 0.0<br>7.1<br>\$7.1 | 0.0<br>7.1<br><b>\$7.1</b> | 0.0<br>7.1<br>\$7.1 | 0.0<br>7.1<br>\$7.1 | 0.0<br>7.1<br>\$7.1 | 0.0<br>7.1<br><b>\$7.1</b> | 0.0<br>7.1<br>\$7.1 | 0.0<br>7.1<br>\$7.1 | 0.0<br>7.1<br><b>\$7.1</b> | 0.0<br>7.1<br>\$7.1 | 0.0<br>7.1<br><b>\$7.1</b> | 0.0<br>7.1<br><b>\$7.1</b> | 0.0<br>7.1<br>\$7.1 | 0.0<br>7.1<br>\$7.1 | 0.0<br>7.1<br><b>\$7.1</b> | 0.0<br>7.1<br><b>\$7.1</b> | 0.0<br>7.1<br><b>\$7.1</b> | 0.0<br>7.1<br><b>\$7.1</b> |       |

#### Rate Base and Plant Summary (continued)

| Y   | ear (2031-2050)               | 2031  | 2032  | 2033  | 2034  | 2035  | 2036  | 2037  | 2038  | 2039  | 2040  | 2041  | 2042  | 2043  | 2044  | 2045  | 2046  | 2047  | 2048  | 2049  | 2050  |
|-----|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1 R | ate Base Summary (\$M)        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2   | Plant                         | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 |
| 3   | Accumulated Depreciation      | (2.2) | (2.3) | (2.5) | (2.6) | (2.7) | (2.8) | (2.9) | (3.0) | (3.1) | (3.2) | (3.4) | (3.5) | (3.6) | (3.7) | (3.8) | (3.9) | (4.0) | (4.1) | (4.2) | (4.4) |
| 4   | Deferred Charges - (mid year) | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 5   | Working Capital               | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) |
| 6   | Total Rate Base               | \$4.8 | \$4.7 | \$4.6 | \$4.5 | \$4.4 | \$4.3 | \$4.1 | \$4.0 | \$3.9 | \$3.8 | \$3.7 | \$3.6 | \$3.5 | \$3.4 | \$3.2 | \$3.1 | \$3.0 | \$2.9 | \$2.8 | \$2.7 |
| 7 P | lant Summary (\$M)            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 1     |       |
| 8   | Opening Balance               | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 |
| 9   | Additions                     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 10  | Ending Balance                | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   |
| 11  | Net Plant in Service          | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 |

| Rate Base and Plant Summary (continued) |  |
|-----------------------------------------|--|
|-----------------------------------------|--|

|    | Year (2051-2070)              | 2051  | 2052  | 2053  | 2054  | 2055  | 2056  | 2057  | 2058  | 2059  | 2060  | 2061  | 2062  | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  | 2070  |
|----|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | Rate Base Summary (\$M)       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Plant                         | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 |
| 3  | Accumulated Depreciation      | (4.5) | (4.6) | (4.7) | (4.8) | (4.9) | (5.0) | (5.1) | (5.2) | (5.4) | (5.5) | (5.6) | (5.7) | (5.8) | (5.9) | (6.0) | (6.1) | (6.3) | (6.4) | (6.5) | (6.6) |
| 4  | Deferred Charges - (mid year) | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 5  | Working Capital               | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) |
| 6  | Total Rate Base               | \$2.6 | \$2.5 | \$2.4 | \$2.2 | \$2.1 | \$2.0 | \$1.9 | \$1.8 | \$1.7 | \$1.6 | \$1.5 | \$1.3 | \$1.2 | \$1.1 | \$1.0 | \$0.9 | \$0.8 | \$0.7 | \$0.6 | \$0.5 |
| 7  | Plant Summary (\$M)           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 8  | Opening Balance               | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 |
| 9  | Additions                     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 10 | Ending Balance                | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   | 7.1   |
| 11 | Net Plant in Service          | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 | \$7.1 |

#### Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_Large Angle HDD Class 3 estimate - Net Cash Flow Summary (\$000's)

|    | Year (2010-2029)             | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018   | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   | 2028   | 2029   |
|----|------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|    |                              |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 1  | Capital Expenditures         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |
| 2  | Pipe                         | \$1,347 | \$5,279 | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    |
| 3  | Land Rights                  | 50      | 150     | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 4  | Removal Costs                | 61      | 1,162   | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 5  | O&M Cost/Savings             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 6  | Property Tax/Savings         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 7  | Tax Savings                  | 0       | (86)    | (153)   | (141)   | (130)   | (119)   | (110)   | (101)   | (93)   | (86)   | (79)   | (72)   | (67)   | (61)   | (56)   | (52)   | (48)   | (44)   | (40)   | (37)   |
| 8  | Annual Cash Flow             | \$1,459 | \$6,505 | (\$153) | (\$141) | (\$130) | (\$119) | (\$110) | (\$101) | (\$93) | (\$86) | (\$79) | (\$72) | (\$67) | (\$61) | (\$56) | (\$52) | (\$48) | (\$44) | (\$40) | (\$37) |
| 9  | Discounted Cash Flow - 6.9%  | \$1,367 | \$5,699 | (\$125) | (\$108) | (\$93)  | (\$80)  | (\$69)  | (\$59)  | (\$51) | (\$44) | (\$38) | (\$33) | (\$28) | (\$24) | (\$21) | (\$18) | (\$15) | (\$13) | (\$11) | (\$10) |
| 10 | Discounted Cash Flow - 10.0% | \$1,326 | \$5,376 | (\$115) | (\$96)  | (\$81)  | (\$67)  | (\$56)  | (\$47)  | (\$39) | (\$33) | (\$28) | (\$23) | (\$19) | (\$16) | (\$14) | (\$11) | (\$9)  | (\$8)  | (\$7)  | (\$6)  |

#### Net Cash Flow Summary (continued)

|    | Year (2030-2049)             | 2030   | 2031   | 2032   | 2033   | 2034   | 2035   | 2036   | 2037   | 2038   | 2039   | 2040   | 2041   | 2042   | 2043   | 2044   | 2045   | 2046   | 2047   | 2048   | 2049  |
|----|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
|    |                              |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |
| 1  | Capital Expenditures         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |
| 2  | Pipe                         | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0   |
| 3  | Land Rights                  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| 4  | Removal Costs                | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| 5  | O&M Cost/Savings             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| 6  | Property Tax/Savings         | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| 7  | Tax Savings                  | (44)   | (40)   | (37)   | (34)   | (32)   | (29)   | (27)   | (25)   | (23)   | (21)   | (19)   | (18)   | (16)   | (15)   | (14)   | (13)   | (12)   | (11)   | (10)   | (9)   |
| 8  | Annual Cash Flow             | (\$44) | (\$40) | (\$37) | (\$34) | (\$32) | (\$29) | (\$27) | (\$25) | (\$23) | (\$21) | (\$19) | (\$18) | (\$16) | (\$15) | (\$14) | (\$13) | (\$12) | (\$11) | (\$10) | (\$9) |
| 9  | Discounted Cash Flow - 6.9%  | (\$13) | (\$11) | (\$10) | (\$8)  | (\$7)  | (\$6)  | (\$5)  | (\$5)  | (\$4)  | (\$3)  | (\$3)  | (\$3)  | (\$2)  | (\$2)  | (\$2)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1) |
| 10 | Discounted Cash Flow - 10.0% | (\$8)  | (\$7)  | (\$6)  | (\$5)  | (\$4)  | (\$3)  | (\$3)  | (\$2)  | (\$2)  | (\$2)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$0)  | (\$0)  | (\$0)  | (\$0) |

#### Net Cash Flow Summary (continued)

|    | Year (2050-2069)             | 2050   | 2051   | 2052  | 2053  | 2054  | 2055  | 2056  | 2057  | 2058  | 2059  | 2060  | 2061  | 2062  | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  |
|----|------------------------------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                              |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Capital Expenditures         |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Pipe                         | \$0    | \$0    | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 3  | Land Rights                  | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 4  | Removal Costs                | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 5  | O&M Cost/Savings             | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 6  | Property Tax/Savings         | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 7  | Tax Savings                  | (11)   | (10)   | (9)   | (8)   | (8)   | (7)   | (6)   | (6)   | (5)   | (5)   | (5)   | (4)   | (4)   | (4)   | (3)   | (3)   | (3)   | (3)   | (2)   | (2)   |
| 8  | Annual Cash Flow             | (\$11) | (\$10) | (\$9) | (\$8) | (\$8) | (\$7) | (\$6) | (\$6) | (\$5) | (\$5) | (\$5) | (\$4) | (\$4) | (\$4) | (\$3) | (\$3) | (\$3) | (\$3) | (\$2) | (\$2) |
| 9  | Discounted Cash Flow - 6.9%  | (\$1)  | (\$1)  | (\$1) | (\$1) | (\$1) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) |
| 10 | Discounted Cash Flow - 10.0% | (\$0)  | (\$0)  | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) |

|    | Net Cash Flow NPV (\$M) | 6.9% | 10.0% |
|----|-------------------------|------|-------|
| 11 | 60 Years (2010-69)      | 6.13 | 5.98  |
| 12 | 25 Years (2010-34)      | 6.18 | 6.00  |

Shoreacres - Kootenay River CPCN Filing Cost of Service Model\_HDD (Class 5 estimate) - Financial Assumptions

# **1** Project Details and Capital Costs

- a. For details on the Capital costs, refer to the Table 4-2 and Table 4-3 of the Application.
- b. Plant in Service date is assumed to be July 1, 2011.
- Plant additions are assumed to enter the rate base starting on July 1, 2011. c.

# 2 Capital Structure and AFUDC Rate

- a. ROE Rate 9.50%
- b. Equity Ratio 40.00%
- c. LTD Rate 6.95%
- d. LTD Ratio 58.37%
- e. STD Rate 4.50%
- f. STD Ratio 1.63%
- g. AFUDC Rate 6.90%
- h. Nominal WACC after Tax 6.90%

The discounted cash flow analysis and the Net Present Value analysis of the incremental annual revenue requirement are done for both 60 and 25 years using the discount factors of 6.9% (After tax WACC) and 10% (benchmark).

# **3** Income Tax and Inflation Rates

- a. The combined Federal and Provincial Income tax is assumed to be 26.5% for 2011 and to be 25% from 2012 onwards.
- b. The inflation is assumed to be 2% per year.

# 4 Capital Cost Allowance / Eligible Capital Expenditures

- a. Transmission Pipe (CCA Class 49) 8%
- b. Land Rights 7%

# **5** Operating and Maintenance Costs

- a. The HDD option incurs O&M savings, which are escalated using the assumed inflation factor of 2%. However, for the purposes of this model, no incremental O&M savings have been assumed as these savings are estimated to be materially small (about \$3,000 per annum).
- b. Capitalized Overhead Rate is assumed to be 14%. For tax purposes, the Capitalized Overhead rate is assumed to be 8%.

# 6 Property Tax

a. The option selected for the Project (i.e. HDD) incurs Property tax savings of about \$1,800 per annum. However, for the purposes of this model, no incremental property tax savings have been assumed as these savings are estimated to be materially small.

# 7 Depreciation Rate

- a. The Depreciation rate for the pipe is assumed to be 1.63%
- For the puposes of depreciating the Capitalized Overheads, the average depreciation rate of 2.54% is assumed. b.

# 8 Deferred Charges

Terasen has proposed to create three non-rate base deferral accounts (discussed below), which will be added to rate base starting in 2012:

- a. Gains and Losses on Asset Disposition Deferral Account created to capture the gain/loss on the book value of the asset being removed/disposed. This account
- is assumed to be amortized over a period of 3 years starting in 2012, although the actual amortization period will be determined as part of the Company's next Revenue Requirement Application. b. Removal Cost Deferral Account - cretaed to capture the removal costs associated with the asset being removed. This account attracts AFUDC and is assumed to be amortized over a period of 3 years starting in 2012, although the actual amortization period will be determined as part of the Company's next Revenue Requirement Application.
- The Kootenay River Cost of Service Deferral Account deferral account to capture the cost of service related to plant in service, consisting of depreciation expense, income taxes and earned return. c. The balance in this account would be transferred to the rate base in 2012 with three years amortization period.

# 9 Energy/Volumes

a. For the purposes of calculating the rate impact, Terasen has considered TGI Volumes including the sales and non-bypass transportation customers. The growth rate of 0.25% is assumed starting from the year 2015.

# Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_HDD (Class 5 estimate) - Revenue Requirement Summary (\$000's)

|    | Year (2011-2030)                        | 2011  | 2012    | 2013    | 2014    | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  | 2026  | 2027  | 2028  | 2029  | 2030  |
|----|-----------------------------------------|-------|---------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Operating & Maintenance                 | \$0   | \$0     | \$0     | \$0     | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2  | Property & Other Taxes                  | 0     | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3  | Depreciation & Amortization             | 53    | 695     | 695     | 695     | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   |
| 4  | Income Tax                              | (48)  | 136     | 143     | 149     | (40)  | (29)  | (19)  | (10)  | (1)   | 6     | 13    | 19    | 24    | 29    | 34    | 38    | 41    | 44    | 47    | 50    |
| 5  | Return on Equity                        | 125   | 303     | 277     | 251     | 235   | 231   | 227   | 223   | 219   | 215   | 211   | 207   | 203   | 199   | 195   | 191   | 187   | 183   | 179   | 175   |
| 6  | Interest                                | 135   | 330     | 301     | 272     | 256   | 251   | 247   | 243   | 238   | 234   | 229   | 225   | 221   | 216   | 212   | 207   | 203   | 199   | 194   | 190   |
| 7  | Other Revenue                           | (265) | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8  | Total Revenue Requirement - Incremental | \$0   | \$1,464 | \$1,416 | \$1,367 | \$558 | \$560 | \$562 | \$562 | \$562 | \$561 | \$560 | \$557 | \$554 | \$551 | \$547 | \$542 | \$538 | \$532 | \$527 | \$521 |
| 9  |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 10 | Total Volume (PJ)                       | 157.7 | 158.1   | 158.4   | 158.8   | 159.2 | 159.6 | 160.0 | 160.4 | 160.8 | 161.2 | 161.6 | 162.0 | 162.4 | 162.8 | 163.2 | 163.6 | 164.0 | 164.4 | 164.8 | 165.2 |
| 11 | Rate Impact (\$/GJ)                     | 0.000 | 0.009   | 0.009   | 0.009   | 0.004 | 0.004 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 |
|    |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

# Revenue Requirement Summary (continued)

|    | Year (2031-2050)                        | 2031  | 2032  | 2033  | 2034  | 2035  | 2036  | 2037  | 2038  | 2039  | 2040  | 2041  | 2042  | 2043  | 2044  | 2045  | 2046  | 2047  | 2048  | 2049  | 2050  |
|----|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Operating & Maintenance                 | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2  | Property & Other Taxes                  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3  | Depreciation & Amortization             | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   |
| 4  | Income Tax                              | 52    | 54    | 55    | 57    | 58    | 59    | 60    | 60    | 61    | 61    | 61    | 61    | 61    | 61    | 61    | 61    | 60    | 60    | 59    | 58    |
| 5  | Return on Equity                        | 171   | 167   | 163   | 159   | 155   | 151   | 147   | 142   | 138   | 134   | 130   | 126   | 122   | 118   | 114   | 110   | 106   | 102   | 98    | 94    |
| 6  | Interest                                | 185   | 181   | 177   | 172   | 168   | 164   | 159   | 155   | 150   | 146   | 142   | 137   | 133   | 128   | 124   | 120   | 115   | 111   | 106   | 102   |
| 7  | Other Revenue                           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8  | Total Revenue Requirement - Incremental | \$514 | \$508 | \$501 | \$494 | \$487 | \$479 | \$472 | \$464 | \$456 | \$448 | \$440 | \$431 | \$423 | \$414 | \$405 | \$397 | \$388 | \$379 | \$370 | \$361 |
| 9  |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 10 | Total Volume (PJ)                       | 165.7 | 166.1 | 166.5 | 166.9 | 167.3 | 167.7 | 168.2 | 168.6 | 169.0 | 169.4 | 169.8 | 170.3 | 170.7 | 171.1 | 171.5 | 172.0 | 172.4 | 172.8 | 173.3 | 173.7 |
| 11 | Rate Impact (\$/GJ)                     | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 |
|    |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

# Revenue Requirement Summary (continued)

|    | Year (2051-2070)                        | 2051  | 2052  | 2053  | 2054  | 2055  | 2056  | 2057  | 2058  | 2059  | 2060  | 2061  | 2062  | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  | 2070  |
|----|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Operating & Maintenance                 | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2  | Property & Other Taxes                  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3  | Depreciation & Amortization             | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   | 106   |
| 4  | Income Tax                              | 58    | 57    | 56    | 55    | 55    | 54    | 53    | 52    | 51    | 50    | 49    | 48    | 46    | 45    | 44    | 43    | 42    | 41    | 39    | 38    |
| 5  | Return on Equity                        | 90    | 86    | 82    | 78    | 74    | 70    | 66    | 62    | 58    | 54    | 50    | 45    | 41    | 37    | 33    | 29    | 25    | 21    | 17    | 13    |
| 6  | Interest                                | 98    | 93    | 89    | 85    | 80    | 76    | 71    | 67    | 63    | 58    | 54    | 49    | 45    | 41    | 36    | 32    | 27    | 23    | 19    | 14    |
| 7  | Other Revenue                           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8  | Total Revenue Requirement - Incremental | \$352 | \$343 | \$333 | \$324 | \$315 | \$305 | \$296 | \$287 | \$277 | \$268 | \$258 | \$249 | \$239 | \$230 | \$220 | \$211 | \$201 | \$191 | \$182 | \$172 |
| 9  |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 10 | Total Volume (PJ)                       | 174.1 | 174.6 | 175.0 | 175.4 | 175.9 | 176.3 | 176.8 | 177.2 | 177.7 | 178.1 | 178.5 | 179.0 | 179.4 | 179.9 | 180.3 | 180.8 | 181.2 | 181.7 | 182.1 | 182.6 |
| 11 | Rate Impact (\$/GJ)                     | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
|    |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

|    | Revenue Requirement NPV (\$M) | 6.9% | 10.0% |
|----|-------------------------------|------|-------|
| 12 | 60 Years (2011-70)            | 9.6  | 7.5   |
| 13 | 25 Years (2011-35)            | 8.7  | 7.1   |

|    | Level Rate Impact (\$/GJ) | 6.9%   | 10.0%  |
|----|---------------------------|--------|--------|
| 14 | 60 Years (2011-70)        | 0.0042 | 0.0047 |
| 15 | 25 Years (2012-36)        | 0.0046 | 0.0049 |

# Appendix H - Financial Schedules Table 1

Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_HDD (Class 5 estimate) - Rate Base and Plant in Service Summary (\$M)

|    | Year (2011-2030)              | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  | 2026  | 2027  | 2028  | 2029  | 2030  |
|----|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | Rate Base Summary (\$M)       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Plant                         | \$3.3 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 |
| 3  | Accumulated Depreciation      | (0.0) | (0.1) | (0.2) | (0.3) | (0.4) | (0.5) | (0.6) | (0.7) | (0.9) | (1.0) | (1.1) | (1.2) | (1.3) | (1.4) | (1.5) | (1.6) | (1.7) | (1.8) | (1.9) | (2.0) |
| 4  | Deferred Charges - (mid year) | 0.0   | 1.5   | 0.9   | 0.3   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 5  | Working Capital               | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) |
| 6  | Total Rate Base               | \$3.3 | \$8.0 | \$7.3 | \$6.6 | \$6.2 | \$6.1 | \$6.0 | \$5.9 | \$5.8 | \$5.7 | \$5.6 | \$5.5 | \$5.3 | \$5.2 | \$5.1 | \$5.0 | \$4.9 | \$4.8 | \$4.7 | \$4.6 |
| 7  | Plant Summary (\$M)           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 8  | Opening Balance               | \$0.0 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 |
| 9  | Additions                     | 6.6   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 10 | Ending Balance                | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   |
| 11 | Net Plant in Service          | \$3.3 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 |

# Rate Base and Plant Summary (continued)

|    | Year (2031-2050)              | 2031  | 2032  | 2033  | 2034  | 2035  | 2036  | 2037  | 2038  | 2039  | 2040  | 2041  | 2042  | 2043  | 2044  | 2045  | 2046  | 2047  | 2048  | 2049  | 2050  |
|----|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | Rate Base Summary (\$M)       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Plant                         | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 |
| 3  | Accumulated Depreciation      | (2.1) | (2.2) | (2.3) | (2.4) | (2.6) | (2.7) | (2.8) | (2.9) | (3.0) | (3.1) | (3.2) | (3.3) | (3.4) | (3.5) | (3.6) | (3.7) | (3.8) | (3.9) | (4.0) | (4.1) |
| 4  | Deferred Charges - (mid year) | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 5  | Working Capital               | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) |
| 6  | Total Rate Base               | \$4.5 | \$4.4 | \$4.3 | \$4.2 | \$4.1 | \$4.0 | \$3.9 | \$3.7 | \$3.6 | \$3.5 | \$3.4 | \$3.3 | \$3.2 | \$3.1 | \$3.0 | \$2.9 | \$2.8 | \$2.7 | \$2.6 | \$2.5 |
| 7  | Plant Summary (\$M)           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 8  | Opening Balance               | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 |
| 9  | Additions                     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 10 | Ending Balance                | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   |
| 11 | Net Plant in Service          | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 |

# Rate Base and Plant Summary (continued)

|    | Year (2051-2070)              | 2051  | 2052  | 2053  | 2054  | 2055  | 2056  | 2057  | 2058  | 2059  | 2060  | 2061  | 2062  | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  | 2070  |
|----|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | Rate Base Summary (\$M)       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Plant                         | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 |
| 3  | Accumulated Depreciation      | (4.3) | (4.4) | (4.5) | (4.6) | (4.7) | (4.8) | (4.9) | (5.0) | (5.1) | (5.2) | (5.3) | (5.4) | (5.5) | (5.6) | (5.7) | (5.8) | (6.0) | (6.1) | (6.2) | (6.3) |
| 4  | Deferred Charges - (mid year) | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 5  | Working Capital               | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) |
| 6  | Total Rate Base               | \$2.4 | \$2.3 | \$2.2 | \$2.0 | \$1.9 | \$1.8 | \$1.7 | \$1.6 | \$1.5 | \$1.4 | \$1.3 | \$1.2 | \$1.1 | \$1.0 | \$0.9 | \$0.8 | \$0.7 | \$0.6 | \$0.5 | \$0.3 |
| 7  | Plant Summary (\$M)           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 8  | Opening Balance               | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 |
| 9  | Additions                     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 10 | Ending Balance                | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   | 6.6   |
| 11 | Net Plant in Service          | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 | \$6.6 |

Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_HDD (Class 5 estimate) - Net Cash Flow Summary (\$000's)

| Year (2010-2029)                | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   | 2028   | 2029   |
|---------------------------------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                 |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 1 Capital Expenditures          |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 2 Pipe                          | \$1,074 | \$5,245 | \$0     | \$0     | \$0     | \$0     | \$0     | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    |
| 3 Land Rights                   | 27      | 80      | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 4 Removal Costs                 | 66      | 1,245   | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 5 O&M Cost/Savings              | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 6 Property Tax/Savings          | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 7 Tax Savings                   | 0       | (82)    | (148)   | (136)   | (125)   | (115)   | (106)   | (97)   | (90)   | (83)   | (76)   | (70)   | (64)   | (59)   | (54)   | (50)   | (46)   | (42)   | (39)   | (36)   |
| 8 Annual Cash Flow              | \$1,167 | \$6,487 | (\$148) | (\$136) | (\$125) | (\$115) | (\$106) | (\$97) | (\$90) | (\$83) | (\$76) | (\$70) | (\$64) | (\$59) | (\$54) | (\$50) | (\$46) | (\$42) | (\$39) | (\$36) |
| 9 Discounted Cash Flow - 6.9%   | \$1,093 | \$5,684 | (\$121) | (\$104) | (\$90)  | (\$77)  | (\$66)  | (\$57) | (\$49) | (\$42) | (\$36) | (\$31) | (\$27) | (\$23) | (\$20) | (\$17) | (\$15) | (\$13) | (\$11) | (\$9)  |
| 10 Discounted Cash Flow - 10.0% | \$1,061 | \$5,362 | (\$111) | (\$93)  | (\$78)  | (\$65)  | (\$54)  | (\$45) | (\$38) | (\$32) | (\$27) | (\$22) | (\$19) | (\$16) | (\$13) | (\$11) | (\$9)  | (\$8)  | (\$6)  | (\$5)  |

# Net Cash Flow Summary (continued)

|    | Year (2030-2049)             | 2030   | 2031   | 2032   | 2033   | 2034   | 2035   | 2036   | 2037   | 2038   | 2039   | 2040   | 2041   | 2042   | 2043   | 2044   | 2045   | 2046   | 2047   | 2048  | 2049  |
|----|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|
|    |                              |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |       |
| 1  | Capital Expenditures         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |       |
| 2  | Pipe                         | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0   | \$0   |
| 3  | Land Rights                  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| 4  | Removal Costs                | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| 5  | O&M Cost/Savings             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| 6  | Property Tax/Savings         | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| 7  | Tax Savings                  | (42)   | (39)   | (36)   | (33)   | (30)   | (28)   | (26)   | (24)   | (22)   | (20)   | (18)   | (17)   | (16)   | (14)   | (13)   | (12)   | (11)   | (10)   | (9)   | (9)   |
| 8  | Annual Cash Flow             | (\$42) | (\$39) | (\$36) | (\$33) | (\$30) | (\$28) | (\$26) | (\$24) | (\$22) | (\$20) | (\$18) | (\$17) | (\$16) | (\$14) | (\$13) | (\$12) | (\$11) | (\$10) | (\$9) | (\$9) |
| 9  | Discounted Cash Flow - 6.9%  | (\$13) | (\$11) | (\$9)  | (\$8)  | (\$7)  | (\$6)  | (\$5)  | (\$4)  | (\$4)  | (\$3)  | (\$3)  | (\$2)  | (\$2)  | (\$2)  | (\$2)  | (\$1)  | (\$1)  | (\$1)  | (\$1) | (\$1) |
| 10 | Discounted Cash Flow - 10.0% | (\$8)  | (\$6)  | (\$5)  | (\$4)  | (\$4)  | (\$3)  | (\$3)  | (\$2)  | (\$2)  | (\$2)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$0)  | (\$0)  | (\$0) | (\$0) |

# Net Cash Flow Summary (continued)

|    | Year (2050-2069)             | 2050   | 2051  | 2052  | 2053  | 2054  | 2055  | 2056  | 2057  | 2058  | 2059  | 2060  | 2061  | 2062  | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  |
|----|------------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                              |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Capital Expenditures         |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Pipe                         | \$0    | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 3  | Land Rights                  | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 4  | Removal Costs                | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 5  | O&M Cost/Savings             | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 6  | Property Tax/Savings         | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 7  | Tax Savings                  | (10)   | (9)   | (9)   | (8)   | (7)   | (7)   | (6)   | (6)   | (5)   | (5)   | (4)   | (4)   | (4)   | (3)   | (3)   | (3)   | (3)   | (2)   | (2)   | (2)   |
| 8  | Annual Cash Flow             | (\$10) | (\$9) | (\$9) | (\$8) | (\$7) | (\$7) | (\$6) | (\$6) | (\$5) | (\$5) | (\$4) | (\$4) | (\$4) | (\$3) | (\$3) | (\$3) | (\$3) | (\$2) | (\$2) | (\$2) |
| 9  | Discounted Cash Flow - 6.9%  | (\$1)  | (\$1) | (\$1) | (\$1) | (\$1) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) |
| 10 | Discounted Cash Flow - 10.0% | (\$0)  | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) |

|    | Net Cash Flow NPV (\$M) | 6.9% | 10.0% |
|----|-------------------------|------|-------|
| 11 | 60 Years (2010-69)      | 5.87 | 5.72  |
| 12 | 25 Years (2010-34)      | 5.92 | 5.74  |

Shoreacres - Kootenay River CPCN Filing Cost of Service Model\_TP ReRoute Alternative (Class 5 estimate) - Financial Assumptions

# **1** Project Details and Capital Costs

- a. For details on the Capital costs, refer to the Table 4-2 and Table 4-3 of the Application.
- b. Plant in Service date is assumed to be July 1, 2011.
- Plant additions are assumed to enter the rate base starting on July 1, 2011. c.

# 2 Capital Structure and AFUDC Rate

- a. ROE Rate 9.50%
- b. Equity Ratio 40.00%
- c. LTD Rate 6.95%
- d. LTD Ratio 58.37%
- e. STD Rate 4.50%
- f. STD Ratio 1.63%
- g. AFUDC Rate 6.90%
- h. Nominal WACC after Tax 6.90%

The discounted cash flow analysis and the Net Present Value analysis of the incremental annual revenue requirement are done for both 60 and 25 years using the discount factors of 6.9% (After tax WACC) and 10% (benchmark).

# **3** Income Tax and Inflation Rates

- a. The combined Federal and Provincial Income tax is assumed to be 26.5% for 2011 and to be 25% from 2012 onwards.
- b. The inflation is assumed to be 2% per year.

# 4 Capital Cost Allowance / Eligible Capital Expenditures

- a. Transmission Pipe (CCA Class 49) 8%
- b. Land Rights 7%

# **5** Operating and Maintenance Costs

- a. The TP ReRoute option incurs O&M savings, which are escalated using the assumed inflation factor of 2%. However, for the purposes of this model, no incremental O&M savings have been assumed as these savings are estimated to be materially small (about \$2,000 per annum).
- b. Capitalized Overhead Rate is assumed to be 14%. For tax purposes, the Capitalized Overhead rate is assumed to be 8%.

# 6 Property Tax

a. The TP ReRoute alternative incurs Property tax expense of about \$5,250 per annum. However, for the purposes of this model, no incremental property tax expenses have been assumed as these are estimated to be materially small.

# 7 Depreciation Rate

- a. The Depreciation rate for the pipe is assumed to be 1.63%
- For the puposes of depreciating the Capitalized Overheads, the average depreciation rate of 2.54% is assumed. b.

# 8 Deferred Charges

Terasen has proposed to create three non-rate base deferral accounts (discussed below), which will be added to rate base starting in 2012:

- a. Gains and Losses on Asset Disposition Deferral Account created to capture the gain/loss on the book value of the asset being removed/disposed. This account
- is assumed to be amortized over a period of 3 years starting in 2012, although the actual amortization period will be determined as part of the Company's next Revenue Requirement Application. b. Removal Cost Deferral Account - cretaed to capture the removal costs associated with the asset being removed. This account attracts AFUDC and is assumed to be amortized over a period of 3 years starting in 2012, although the actual amortization period will be determined as part of the Company's next Revenue Requirement Application.
- The Kootenay River Cost of Service Deferral Account deferral account to capture the cost of service related to plant in service, consisting of depreciation expense, income taxes and earned return. c. The balance in this account would be transferred to the rate base in 2012 with three year amortization period.

# 9 Energy/Volumes

a. For the purposes of calculating the rate impact, Terasen has considered TGI Volumes including the sales and non-bypass transportation customers. The growth rate of 0.25% is assumed starting from the year 2015.

# Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_TP ReRoute Alternative (Class 5 estimate) - Revenue Requirement Summary (\$000's)

|    | Year (2011-2030)                        | 2011  | 2012    | 2013    | 2014    | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  | 2026  | 2027  | 2028  | 2029  | 2030  |
|----|-----------------------------------------|-------|---------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Operating & Maintenance                 | \$0   | \$0     | \$0     | \$0     | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2  | Property & Other Taxes                  | 0     | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3  | Depreciation & Amortization             | 59    | 746     | 746     | 746     | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   |
| 4  | Income Tax                              | (78)  | 138     | 148     | 157     | (41)  | (27)  | (15)  | (3)   | 8     | 17    | 26    | 34    | 41    | 48    | 54    | 59    | 64    | 68    | 72    | 75    |
| 5  | Return on Equity                        | 182   | 423     | 395     | 366     | 350   | 345   | 341   | 336   | 332   | 327   | 323   | 318   | 314   | 309   | 305   | 300   | 296   | 292   | 287   | 283   |
| 6  | Interest                                | 198   | 459     | 429     | 398     | 380   | 375   | 370   | 365   | 360   | 356   | 351   | 346   | 341   | 336   | 331   | 326   | 322   | 317   | 312   | 307   |
| 7  | Other Revenue                           | (361) | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8  | Total Revenue Requirement - Incremental | \$0   | \$1,766 | \$1,717 | \$1,667 | \$806 | \$811 | \$814 | \$817 | \$818 | \$818 | \$818 | \$816 | \$814 | \$811 | \$808 | \$804 | \$799 | \$794 | \$789 | \$783 |
| 9  |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 10 | Total Volume (PJ)                       | 157.7 | 158.1   | 158.4   | 158.8   | 159.2 | 159.6 | 160.0 | 160.4 | 160.8 | 161.2 | 161.6 | 162.0 | 162.4 | 162.8 | 163.2 | 163.6 | 164.0 | 164.4 | 164.8 | 165.2 |
| 11 | Rate Impact (\$/GJ)                     | 0.000 | 0.011   | 0.011   | 0.010   | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |
|    |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

# Revenue Requirement Summary (continued)

|    | Year (2031-2050)                        | 2031  | 2032  | 2033  | 2034  | 2035  | 2036  | 2037  | 2038  | 2039  | 2040  | 2041  | 2042  | 2043  | 2044  | 2045  | 2046  | 2047  | 2048  | 2049  | 2050  |
|----|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Operating & Maintenance                 | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2  | Property & Other Taxes                  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3  | Depreciation & Amortization             | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   |
| 4  | Income Tax                              | 79    | 81    | 84    | 86    | 87    | 89    | 90    | 91    | 92    | 93    | 93    | 94    | 94    | 94    | 94    | 94    | 94    | 93    | 93    | 92    |
| 5  | Return on Equity                        | 278   | 274   | 269   | 265   | 260   | 256   | 251   | 247   | 242   | 238   | 233   | 229   | 224   | 220   | 215   | 211   | 206   | 202   | 197   | 193   |
| 6  | Interest                                | 302   | 297   | 292   | 287   | 283   | 278   | 273   | 268   | 263   | 258   | 253   | 249   | 244   | 239   | 234   | 229   | 224   | 219   | 214   | 210   |
| 7  | Other Revenue                           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8  | Total Revenue Requirement - Incremental | \$777 | \$770 | \$763 | \$756 | \$748 | \$740 | \$732 | \$724 | \$715 | \$707 | \$698 | \$689 | \$680 | \$671 | \$661 | \$652 | \$642 | \$632 | \$623 | \$613 |
| 9  |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 10 | ) Total Volume (PJ)                     | 165.7 | 166.1 | 166.5 | 166.9 | 167.3 | 167.7 | 168.2 | 168.6 | 169.0 | 169.4 | 169.8 | 170.3 | 170.7 | 171.1 | 171.5 | 172.0 | 172.4 | 172.8 | 173.3 | 173.7 |
| 11 | Rate Impact (\$/GJ)                     | 0.005 | 0.005 | 0.005 | 0.005 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 |
|    |                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

# Revenue Requirement Summary (continued)

| Year (2051-2070)                          | 2051  | 2052  | 2053  | 2054  | 2055  | 2056  | 2057  | 2058  | 2059  | 2060  | 2061  | 2062  | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  | 2070  |
|-------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1 Operating & Maintenance                 | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2 Property & Other Taxes                  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3 Depreciation & Amortization             | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   | 118   |
| 4 Income Tax                              | 92    | 91    | 90    | 89    | 89    | 88    | 87    | 86    | 85    | 84    | 83    | 81    | 80    | 79    | 78    | 77    | 75    | 74    | 73    | 71    |
| 5 Return on Equity                        | 188   | 184   | 180   | 175   | 171   | 166   | 162   | 157   | 153   | 148   | 144   | 139   | 135   | 130   | 126   | 121   | 117   | 112   | 108   | 103   |
| 6 Interest                                | 205   | 200   | 195   | 190   | 185   | 180   | 176   | 171   | 166   | 161   | 156   | 151   | 146   | 141   | 137   | 132   | 127   | 122   | 117   | 112   |
| 7 Other Revenue                           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8 Total Revenue Requirement - Incremental | \$603 | \$593 | \$583 | \$572 | \$562 | \$552 | \$542 | \$531 | \$521 | \$511 | \$500 | \$490 | \$479 | \$469 | \$458 | \$448 | \$437 | \$426 | \$416 | \$405 |
| 9                                         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 10 Total Volume (PJ)                      | 174.1 | 174.6 | 175.0 | 175.4 | 175.9 | 176.3 | 176.8 | 177.2 | 177.7 | 178.1 | 178.5 | 179.0 | 179.4 | 179.9 | 180.3 | 180.8 | 181.2 | 181.7 | 182.1 | 182.6 |
| 11 Rate Impact (\$/GJ)                    | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 |
|                                           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

|    | Revenue Requirement NPV (\$M) | 6.9% | 10.0% |
|----|-------------------------------|------|-------|
| 12 | 60 Years (2011-70)            | 13.4 | 10.2  |
| 13 | 25 Years (2011-35)            | 11.8 | 9.6   |

|    | Level Rate Impact (\$/GJ) | 6.9%   | 10.0%  |
|----|---------------------------|--------|--------|
| 14 | 60 Years (2011-70)        | 0.0059 | 0.0063 |
| 15 | 25 Years (2012-36)        | 0.0062 | 0.0066 |

Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_TP ReRoute Alternative (Class 5 estimate) - Rate Base and Plant in Service Summary (\$M)

|    | Year (2011-2030)              | 2011  | 2012   | 2013   | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  | 2026  | 2027  | 2028  | 2029  | 2030  |
|----|-------------------------------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | Rate Base Summary (\$M)       |       |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Plant                         | \$4.8 | \$9.7  | \$9.7  | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 |
| 3  | Accumulated Depreciation      | (0.0) | (0.1)  | (0.2)  | (0.4) | (0.5) | (0.6) | (0.7) | (0.8) | (0.9) | (1.1) | (1.2) | (1.3) | (1.4) | (1.5) | (1.7) | (1.8) | (1.9) | (2.0) | (2.1) | (2.2) |
| 4  | Deferred Charges - (mid year) | 0.0   | 1.6    | 0.9    | 0.3   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 5  | Working Capital               | (0.0) | (0.0)  | (0.0)  | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) |
| 6  | Total Rate Base               | \$4.8 | \$11.1 | \$10.4 | \$9.6 | \$9.2 | \$9.1 | \$9.0 | \$8.9 | \$8.7 | \$8.6 | \$8.5 | \$8.4 | \$8.3 | \$8.1 | \$8.0 | \$7.9 | \$7.8 | \$7.7 | \$7.6 | \$7.4 |
| 7  | Plant Summary (\$M)           |       |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 8  | Opening Balance               | \$0.0 | \$9.7  | \$9.7  | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 |
| 9  | Additions                     | 9.7   | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 10 | Ending Balance                | 9.7   | 9.7    | 9.7    | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   |
| 11 | Net Plant in Service          | \$4.8 | \$9.7  | \$9.7  | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 |

# Rate Base and Plant Summary (continued)

|    | Year (2031-2050)              | 2031  | 2032  | 2033  | 2034  | 2035  | 2036  | 2037  | 2038  | 2039  | 2040  | 2041  | 2042  | 2043  | 2044  | 2045  | 2046  | 2047  | 2048  | 2049  | 2050  |
|----|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | Rate Base Summary (\$M)       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Plant                         | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 |
| 3  | Accumulated Depreciation      | (2.4) | (2.5) | (2.6) | (2.7) | (2.8) | (2.9) | (3.1) | (3.2) | (3.3) | (3.4) | (3.5) | (3.7) | (3.8) | (3.9) | (4.0) | (4.1) | (4.2) | (4.4) | (4.5) | (4.6) |
| 4  | Deferred Charges - (mid year) | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 5  | Working Capital               | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) |
| 6  | Total Rate Base               | \$7.3 | \$7.2 | \$7.1 | \$7.0 | \$6.8 | \$6.7 | \$6.6 | \$6.5 | \$6.4 | \$6.3 | \$6.1 | \$6.0 | \$5.9 | \$5.8 | \$5.7 | \$5.5 | \$5.4 | \$5.3 | \$5.2 | \$5.1 |
| 7  | Plant Summary (\$M)           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 8  | Opening Balance               | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 |
| 9  | Additions                     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 10 | Ending Balance                | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   |
| 11 | Net Plant in Service          | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 |

# Rate Base and Plant Summary (continued)

|    | Year (2051-2070)              | 2051  | 2052  | 2053  | 2054  | 2055  | 2056  | 2057  | 2058  | 2059  | 2060  | 2061  | 2062  | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  | 2070  |
|----|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | Rate Base Summary (\$M)       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Plant                         | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 |
| 3  | Accumulated Depreciation      | (4.7) | (4.8) | (5.0) | (5.1) | (5.2) | (5.3) | (5.4) | (5.5) | (5.7) | (5.8) | (5.9) | (6.0) | (6.1) | (6.2) | (6.4) | (6.5) | (6.6) | (6.7) | (6.8) | (7.0) |
| 4  | Deferred Charges - (mid year) | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 5  | Working Capital               | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) | (0.0) |
| 6  | Total Rate Base               | \$5.0 | \$4.8 | \$4.7 | \$4.6 | \$4.5 | \$4.4 | \$4.3 | \$4.1 | \$4.0 | \$3.9 | \$3.8 | \$3.7 | \$3.5 | \$3.4 | \$3.3 | \$3.2 | \$3.1 | \$3.0 | \$2.8 | \$2.7 |
| 7  | Plant Summary (\$M)           |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 8  | Opening Balance               | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 |
| 9  | Additions                     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 10 | Ending Balance                | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   | 9.7   |
| 11 | Net Plant in Service          | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 | \$9.7 |

Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_TP ReRoute Alternative (Class 5 estimate) - Net Cash Flow Summary (\$000's)

|    | Year (2010-2029)             | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    | 2019    | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   | 2028   | 2029   |
|----|------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|    |                              |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |
| 1  | Capital Expenditures         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |        |
| 2  | Pipe                         | \$1,672 | \$5,313 | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    |
| 3  | Land Rights                  | 598     | 1,793   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 4  | Removal Costs                | 67      | 1,265   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 5  | O&M Cost/Savings             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 6  | Property Tax/Savings         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 7  | Tax Savings                  | 0       | (121)   | (189)   | (174)   | (160)   | (148)   | (136)   | (126)   | (116)   | (107)   | (98)   | (91)   | (83)   | (77)   | (71)   | (65)   | (60)   | (56)   | (51)   | (47)   |
| 8  | Annual Cash Flow             | \$2,336 | \$8,250 | (\$189) | (\$174) | (\$160) | (\$148) | (\$136) | (\$126) | (\$116) | (\$107) | (\$98) | (\$91) | (\$83) | (\$77) | (\$71) | (\$65) | (\$60) | (\$56) | (\$51) | (\$47) |
| 9  | Discounted Cash Flow - 6.9%  | \$2,189 | \$7,228 | (\$155) | (\$133) | (\$115) | (\$99)  | (\$85)  | (\$74)  | (\$63)  | (\$55)  | (\$47) | (\$41) | (\$35) | (\$30) | (\$26) | (\$22) | (\$19) | (\$17) | (\$14) | (\$12) |
| 10 | Discounted Cash Flow - 10.0% | \$2,124 | \$6,818 | (\$142) | (\$119) | (\$100) | (\$83)  | (\$70)  | (\$59)  | (\$49)  | (\$41)  | (\$34) | (\$29) | (\$24) | (\$20) | (\$17) | (\$14) | (\$12) | (\$10) | (\$8)  | (\$7)  |

# Net Cash Flow Summary (continued)

|    | Year (2030-2049)             | 2030   | 2031   | 2032   | 2033   | 2034   | 2035   | 2036   | 2037   | 2038   | 2039   | 2040   | 2041   | 2042   | 2043   | 2044   | 2045   | 2046   | 2047   | 2048   | 2049   |
|----|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|    |                              |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 1  | Capital Expenditures         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 2  | Pipe                         | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    |
| 3  | Land Rights                  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 4  | Removal Costs                | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 5  | O&M Cost/Savings             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 6  | Property Tax/Savings         | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 7  | Tax Savings                  | (56)   | (51)   | (47)   | (44)   | (40)   | (37)   | (34)   | (31)   | (29)   | (27)   | (25)   | (23)   | (21)   | (19)   | (18)   | (16)   | (15)   | (14)   | (13)   | (12)   |
| 8  | Annual Cash Flow             | (\$56) | (\$51) | (\$47) | (\$44) | (\$40) | (\$37) | (\$34) | (\$31) | (\$29) | (\$27) | (\$25) | (\$23) | (\$21) | (\$19) | (\$18) | (\$16) | (\$15) | (\$14) | (\$13) | (\$12) |
| 9  | Discounted Cash Flow - 6.9%  | (\$17) | (\$14) | (\$12) | (\$11) | (\$9)  | (\$8)  | (\$7)  | (\$6)  | (\$5)  | (\$4)  | (\$4)  | (\$3)  | (\$3)  | (\$2)  | (\$2)  | (\$2)  | (\$2)  | (\$1)  | (\$1)  | (\$1)  |
| 10 | Discounted Cash Flow - 10.0% | (\$10) | (\$8)  | (\$7)  | (\$6)  | (\$5)  | (\$4)  | (\$3)  | (\$3)  | (\$2)  | (\$2)  | (\$2)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$0)  | (\$0)  | (\$0)  |

# Net Cash Flow Summary (continued)

|    | Year (2050-2069)             | 2050   | 2051   | 2052   | 2053   | 2054   | 2055  | 2056  | 2057  | 2058  | 2059  | 2060  | 2061  | 2062  | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  |
|----|------------------------------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                              |        |        |        |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Capital Expenditures         |        |        |        |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Pipe                         | \$0    | \$0    | \$0    | \$0    | \$0    | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 3  | Land Rights                  | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 4  | Removal Costs                | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 5  | O&M Cost/Savings             | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 6  | Property Tax/Savings         | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 7  | Tax Savings                  | (14)   | (13)   | (12)   | (11)   | (10)   | (9)   | (9)   | (8)   | (7)   | (7)   | (6)   | (6)   | (5)   | (5)   | (4)   | (4)   | (4)   | (4)   | (3)   | (3)   |
| 8  | Annual Cash Flow             | (\$14) | (\$13) | (\$12) | (\$11) | (\$10) | (\$9) | (\$9) | (\$8) | (\$7) | (\$7) | (\$6) | (\$6) | (\$5) | (\$5) | (\$4) | (\$4) | (\$4) | (\$4) | (\$3) | (\$3) |
| 9  | Discounted Cash Flow - 6.9%  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1) | (\$1) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) |
| 10 | Discounted Cash Flow - 10.0% | (\$0)  | (\$0)  | (\$0)  | (\$0)  | (\$0)  | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) |

|    | Net Cash Flow NPV (\$M) | 6.9% | 10.0% |
|----|-------------------------|------|-------|
| 11 | 60 Years (2010-69)      | 8.25 | 8.04  |
| 12 | 25 Years (2010-34)      | 8.31 | 8.07  |

Shoreacres - Kootenay River CPCN Filing Cost of Service Model\_IP ReRoute Alternative (Class 5 estimate)\_Looping in 2037 - Financial Assumptions

# **1** Project Details and Capital Costs

- a. For details on the Capital costs, refer to the Table 4-2 and Table 4-3 of the Application. The total Capital cost includes \$10.2M (in \$2037) of Capital addition due to capacity looping required in 2037.
- b. Plant in Service date is assumed to be July 1, 2011.
- Plant additions are assumed to enter the rate base starting on July 1, 2011. c.

# 2 Capital Structure and AFUDC Rate

- a. ROE Rate 9.50%
- b. Equity Ratio 40.00%
- c. LTD Rate 6.95%
- d. LTD Ratio 58.37%
- e. STD Rate 4.50%
- f. STD Ratio 1.63%
- g. AFUDC Rate 6.90%
- h. Nominal WACC after Tax 6.90%

The discounted cash flow analysis and the Net Present Value analysis of the incremental annual revenue requirement are done for both 60 and 25 years using the discount factors of 6.9% (After tax WACC) and 10% (benchmark).

# **3** Income Tax and Inflation Rates

- a. The combined Federal and Provincial Income tax is assumed to be 26.5% for 2011 and to be 25% from 2012 onwards.
- b. The inflation is assumed to be 2% per year.

# 4 Capital Cost Allowance / Eligible Capital Expenditures

- a. IP Pipe (CCA Class 49) 8%
- b. Land Rights 7%
- c. Station (CCA Class 51) 6%

# **5** Operating and Maintenance Costs

- a. The IP ReRoute option incurs no O&M savings.
- b. Capitalized Overhead Rate is assumed to be 14%. For tax purposes, the Capitalized Overhead rate is assumed to be 8%.

# 6 Property Tax

a. The IP ReRoute alternative incurs Property tax expense of about \$8,250 per annum. However, for the purposes of this model, no incremental property tax expenses have been assumed as these are estimated to be materially small.

# 7 Depreciation Rate

- a. The Depreciation rate for the pipe is assumed to be 1.97% and 5.72% for the Station.
- For the puposes of depreciating the Capitalized Overheads, the average depreciation rate of 2.54% is assumed. b.

# 8 Deferred Charges

Terasen has proposed to create three non-rate base deferral accounts (discussed below), which will be added to rate base starting in 2012:

- a. Gains and Losses on Asset Disposition Deferral Account created to capture the gain/loss on the book value of the asset being removed/disposed. This account
- is assumed to be amortized over a period of 3 years starting in 2012, although the actual amortization period will be determined as part of the Company's next Revenue Requirement Application. b. Removal Cost Deferral Account - cretaed to capture the removal costs associated with the asset being removed. This account attracts AFUDC and is assumed to be amortized over a period of 3 years starting in 2012, although the actual amortization period will be determined as part of the Company's next Revenue Requirement Application.
- The Kootenay River Cost of Service Deferral Account deferral account to capture the cost of service related to plant in service, consisting of depreciation expense, income taxes and earned return. c. The balance in this account would be transferred to the rate base in 2012 with three year amortization period.

# 9 Energy/Volumes

a. For the purposes of calculating the rate impact, Terasen has considered TGI Volumes including the sales and non-bypass transportation customers. The growth rate of 0.25% is assumed starting from the year 2015.

# Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_IP ReRoute Alternative (Class 5 estimate)\_Looping in 2037 - Revenue Requirement Summary (\$000's)

|    | Year (2011-2030)                        | 2011  | 2012    | 2013    | 2014    | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  | 2026  | 2027  | 2028  | 2029  | 2030  |
|----|-----------------------------------------|-------|---------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Operating & Maintenance                 | \$0   | \$0     | \$0     | \$0     | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2  | Property & Other Taxes                  | 0     | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3  | Depreciation & Amortization             | 97    | 838     | 838     | 838     | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   | 185   |
| 4  | Income Tax                              | (59)  | 147     | 158     | 168     | (38)  | (23)  | (9)   | 3     | 14    | 24    | 33    | 41    | 48    | 55    | 60    | 66    | 70    | 74    | 78    | 81    |
| 5  | Return on Equity                        | 190   | 440     | 408     | 376     | 356   | 349   | 341   | 334   | 327   | 319   | 312   | 305   | 298   | 290   | 283   | 276   | 268   | 261   | 254   | 246   |
| 6  | Interest                                | 207   | 478     | 443     | 408     | 387   | 379   | 371   | 363   | 355   | 347   | 339   | 331   | 323   | 315   | 307   | 299   | 291   | 284   | 276   | 268   |
| 7  | Other Revenue                           | (435) | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8  | Total Revenue Requirement - Incremental | \$0   | \$1,902 | \$1,846 | \$1,789 | \$889 | \$889 | \$887 | \$884 | \$880 | \$875 | \$868 | \$861 | \$853 | \$845 | \$835 | \$825 | \$814 | \$803 | \$791 | \$779 |
| 9  |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 10 | Total Volume (PJ)                       | 157.7 | 158.1   | 158.4   | 158.8   | 159.2 | 159.6 | 160.0 | 160.4 | 160.8 | 161.2 | 161.6 | 162.0 | 162.4 | 162.8 | 163.2 | 163.6 | 164.0 | 164.4 | 164.8 | 165.2 |
| 11 | Rate Impact (\$/GJ)                     | 0.000 | 0.012   | 0.012   | 0.011   | 0.006 | 0.006 | 0.006 | 0.006 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 |
|    |                                         |       |         |         |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

# Revenue Requirement Summary (continued)

|    | Year (2031-2050)                        | 2031  | 2032  | 2033  | 2034  | 2035  | 2036  | 2037    | 2038    | 2039    | 2040    | 2041    | 2042    | 2043    | 2044    | 2045    | 2046    | 2047    | 2048    | 2049    | 2050    |
|----|-----------------------------------------|-------|-------|-------|-------|-------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|    |                                         |       |       |       |       |       |       |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| 1  | Operating & Maintenance                 | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     |
| 2  | Property & Other Taxes                  | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 3  | Depreciation & Amortization             | 185   | 185   | 185   | 185   | 185   | 185   | 285     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     |
| 4  | Income Tax                              | 83    | 85    | 87    | 89    | 90    | 91    | 189     | 286     | 283     | 281     | 278     | 275     | 272     | 269     | 265     | 262     | 258     | 254     | 250     | 246     |
| 5  | Return on Equity                        | 239   | 232   | 225   | 217   | 210   | 203   | 387     | 569     | 554     | 539     | 524     | 509     | 494     | 479     | 464     | 449     | 434     | 419     | 404     | 389     |
| 6  | Interest                                | 260   | 252   | 244   | 236   | 228   | 220   | 421     | 618     | 602     | 585     | 569     | 553     | 537     | 520     | 504     | 488     | 472     | 455     | 439     | 423     |
| 7  | Other Revenue                           | 0     | 0     | 0     | 0     | 0     | 0     | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| 8  | Total Revenue Requirement - Incremental | \$767 | \$754 | \$740 | \$726 | \$712 | \$698 | \$1,282 | \$1,859 | \$1,825 | \$1,791 | \$1,757 | \$1,723 | \$1,689 | \$1,654 | \$1,620 | \$1,585 | \$1,550 | \$1,515 | \$1,480 | \$1,445 |
| 9  |                                         |       |       |       |       |       |       |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| 10 | Total Volume (PJ)                       | 165.7 | 166.1 | 166.5 | 166.9 | 167.3 | 167.7 | 168.2   | 168.6   | 169.0   | 169.4   | 169.8   | 170.3   | 170.7   | 171.1   | 171.5   | 172.0   | 172.4   | 172.8   | 173.3   | 173.7   |
| 11 | Rate Impact (\$/GJ)                     | 0.005 | 0.005 | 0.004 | 0.004 | 0.004 | 0.004 | 0.008   | 0.011   | 0.011   | 0.011   | 0.010   | 0.010   | 0.010   | 0.010   | 0.009   | 0.009   | 0.009   | 0.009   | 0.009   | 0.008   |
|    |                                         |       |       |       |       |       |       |         |         |         |         |         |         |         |         |         |         |         |         |         |         |

# Revenue Requirement Summary (continued)

|    | Year (2051-2070)                        | 2051    | 2052    | 2053    | 2054    | 2055    | 2056    | 2057    | 2058    | 2059    | 2060    | 2061    | 2062    | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  | 2070  |
|----|-----------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                                         |         |         |         |         |         |         |         |         |         |         |         |         |       |       |       |       |       |       |       |       |
| 1  | Operating & Maintenance                 | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 2  | Property & Other Taxes                  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3  | Depreciation & Amortization             | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386     | 386   | 386   | 386   | 386   | 386   | 386   | 386   | 386   |
| 4  | Income Tax                              | 242     | 238     | 234     | 230     | 226     | 221     | 217     | 212     | 208     | 203     | 199     | 194     | 190   | 185   | 180   | 175   | 171   | 166   | 161   | 156   |
| 5  | Return on Equity                        | 374     | 359     | 344     | 329     | 315     | 300     | 285     | 270     | 255     | 240     | 225     | 210     | 195   | 180   | 165   | 150   | 135   | 120   | 105   | 90    |
| 6  | Interest                                | 407     | 390     | 374     | 358     | 342     | 325     | 309     | 293     | 277     | 260     | 244     | 228     | 212   | 195   | 179   | 163   | 147   | 130   | 114   | 98    |
| 7  | Other Revenue                           | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 8  | Total Revenue Requirement - Incremental | \$1,410 | \$1,374 | \$1,339 | \$1,303 | \$1,268 | \$1,232 | \$1,197 | \$1,161 | \$1,125 | \$1,090 | \$1,054 | \$1,018 | \$982 | \$946 | \$910 | \$875 | \$839 | \$803 | \$767 | \$731 |
| 9  |                                         |         |         |         |         |         |         |         |         |         |         |         |         |       |       |       |       |       |       |       |       |
| 10 | Total Volume (PJ)                       | 174.1   | 174.6   | 175.0   | 175.4   | 175.9   | 176.3   | 176.8   | 177.2   | 177.7   | 178.1   | 178.5   | 179.0   | 179.4 | 179.9 | 180.3 | 180.8 | 181.2 | 181.7 | 182.1 | 182.6 |
| 11 | Rate Impact (\$/GJ)                     | 0.008   | 0.008   | 0.008   | 0.007   | 0.007   | 0.007   | 0.007   | 0.007   | 0.006   | 0.006   | 0.006   | 0.006   | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.004 | 0.004 | 0.004 |
|    |                                         |         |         |         |         |         |         |         |         |         |         |         |         |       |       |       |       |       |       |       |       |

|    | Revenue Requirement NPV (\$M) | 6.9% | 10.0% |
|----|-------------------------------|------|-------|
| 12 | 60 Years (2011-70)            | 16.2 | 11.6  |
| 13 | 25 Years (2011-35)            | 12.5 | 10.2  |

|    | Level Rate Impact (\$/GJ) | 6.9%   | 10.0%  |
|----|---------------------------|--------|--------|
| 14 | 60 Years (2011-70)        | 0.0071 | 0.0072 |
| 15 | 25 Years (2012-36)        | 0.0066 | 0.0070 |

# Appendix H - Financial Schedules Table 1

# Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_IP ReRoute Alternative (Class 5 estimate)\_Looping in 2037 - Rate Base and Plant in Service Summary (\$M)

|    | Year (2011-2030)              | 2011  | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   | 2028   | 2029   | 2030   |
|----|-------------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1  | Rate Base Summary (\$M)       |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 2  | Plant                         | \$5.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 |
| 3  | Accumulated Depreciation      | (0.0) | (0.2)  | (0.4)  | (0.6)  | (0.8)  | (1.0)  | (1.1)  | (1.3)  | (1.5)  | (1.7)  | (1.9)  | (2.1)  | (2.3)  | (2.5)  | (2.7)  | (2.9)  | (3.1)  | (3.3)  | (3.5)  | (3.6)  |
| 4  | Deferred Charges - (mid year) | 0.0   | 1.6    | 1.0    | 0.3    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 5  | Working Capital               | (0.0) | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  |
| 6  | Total Rate Base               | \$5.0 | \$11.6 | \$10.7 | \$9.9  | \$9.4  | \$9.2  | \$9.0  | \$8.8  | \$8.6  | \$8.4  | \$8.2  | \$8.0  | \$7.8  | \$7.6  | \$7.4  | \$7.3  | \$7.1  | \$6.9  | \$6.7  | \$6.5  |
| 7  | Plant Summary (\$M)           |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 8  | Opening Balance               | \$0.0 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 |
| 9  | Additions                     | 10.1  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 10 | Ending Balance                | 10.1  | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   |
| 11 | Net Plant in Service          | \$5.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 |

# Rate Base and Plant Summary (continued)

|    | Year (2031-2050)              | 2031   | 2032   | 2033   | 2034   | 2035   | 2036   | 2037   | 2038   | 2039   | 2040   | 2041   | 2042   | 2043   | 2044   | 2045   | 2046   | 2047   | 2048   | 2049   | 2050   |
|----|-------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1  | Rate Base Summary (\$M)       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 2  | Plant                         | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$15.3 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 |
| 3  | Accumulated Depreciation      | (3.8)  | (4.0)  | (4.2)  | (4.4)  | (4.6)  | (4.8)  | (5.0)  | (5.4)  | (5.8)  | (6.2)  | (6.6)  | (7.0)  | (7.3)  | (7.7)  | (8.1)  | (8.5)  | (8.9)  | (9.3)  | (9.7)  | (10.1) |
| 4  | Deferred Charges - (mid year) | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 5  | Working Capital               | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  |
| 6  | Total Rate Base               | \$6.3  | \$6.1  | \$5.9  | \$5.7  | \$5.5  | \$5.3  | \$10.2 | \$15.0 | \$14.6 | \$14.2 | \$13.8 | \$13.4 | \$13.0 | \$12.6 | \$12.2 | \$11.8 | \$11.4 | \$11.0 | \$10.6 | \$10.2 |
| 7  | Plant Summary (\$M)           |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 8  | Opening Balance               | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 |
| 9  | Additions                     | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 10.2   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 10 | Ending Balance                | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 10.1   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   |
| 11 | Net Plant in Service          | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$10.1 | \$15.3 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 |

# Rate Base and Plant Summary (continued)

|    | Year (2051-2070)              | 2051   | 2052   | 2053   | 2054   | 2055   | 2056   | 2057   | 2058   | 2059   | 2060   | 2061   | 2062   | 2063   | 2064   | 2065   | 2066   | 2067   | 2068   | 2069   | 2070   |
|----|-------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1  | Rate Base Summary (\$M)       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 2  | Plant                         | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 |
| 3  | Accumulated Depreciation      | (10.5) | (10.9) | (11.3) | (11.7) | (12.1) | (12.5) | (12.9) | (13.3) | (13.6) | (14.0) | (14.4) | (14.8) | (15.2) | (15.6) | (16.0) | (16.4) | (16.8) | (17.2) | (17.6) | (18.0) |
| 4  | Deferred Charges - (mid year) | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 5  | Working Capital               | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  | (0.0)  |
| 6  | Total Rate Base               | \$9.9  | \$9.5  | \$9.1  | \$8.7  | \$8.3  | \$7.9  | \$7.5  | \$7.1  | \$6.7  | \$6.3  | \$5.9  | \$5.5  | \$5.1  | \$4.7  | \$4.3  | \$3.9  | \$3.6  | \$3.2  | \$2.8  | \$2.4  |
| 7  | Plant Summary (\$M)           |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 8  | Opening Balance               | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 |
| 9  | Additions                     | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 10 | Ending Balance                | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   | 20.4   |
| 11 | Net Plant in Service          | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 | \$20.4 |

# Shoreacres - Kootenay River CPCN Filing

Cost of Service Model\_IP ReRoute Alternative (Class 5 estimate)\_Looping in 2037 - Net Cash Flow Summary (\$000's)

|    | Year (2010-2029)             | 2010    | 2011    | 2012    | 2013    | 2014    | 2015    | 2016    | 2017    | 2018    | 2019    | 2020    | 2021    | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   | 2028   | 2029   |
|----|------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
|    |                              |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |
| 1  | Capital Expenditures         |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |
| 2  | Pipe                         | \$2,024 | \$7,042 | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0     | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    |
| 3  | Land Rights                  | 127     | 381     | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 4  | Removal Costs                | 67      | 1,265   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 5  | O&M Cost/Savings             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 6  | Property Tax/Savings         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 7  | Tax Savings                  | 0       | (119)   | (209)   | (193)   | (178)   | (163)   | (150)   | (139)   | (128)   | (117)   | (108)   | (100)   | (92)   | (84)   | (78)   | (72)   | (66)   | (61)   | (56)   | (51)   |
| 8  | Annual Cash Flow             | \$2,217 | \$8,569 | (\$209) | (\$193) | (\$178) | (\$163) | (\$150) | (\$139) | (\$128) | (\$117) | (\$108) | (\$100) | (\$92) | (\$84) | (\$78) | (\$72) | (\$66) | (\$61) | (\$56) | (\$51) |
| 9  | Discounted Cash Flow - 6.9%  | \$2,077 | \$7,508 | (\$171) | (\$148) | (\$127) | (\$110) | (\$94)  | (\$81)  | (\$70)  | (\$60)  | (\$52)  | (\$45)  | (\$39) | (\$33) | (\$29) | (\$25) | (\$21) | (\$18) | (\$16) | (\$14) |
| 10 | Discounted Cash Flow - 10.0% | \$2,016 | \$7,082 | (\$157) | (\$132) | (\$110) | (\$92)  | (\$77)  | (\$65)  | (\$54)  | (\$45)  | (\$38)  | (\$32)  | (\$27) | (\$22) | (\$19) | (\$16) | (\$13) | (\$11) | (\$9)  | (\$8)  |

# Net Cash Flow Summary (continued)

|    | Year (2030-2049)             | 2030   | 2031   | 2032   | 2033   | 2034   | 2035   | 2036   | 2037   | 2038   | 2039   | 2040     | 2041   | 2042   | 2043   | 2044   | 2045   | 2046   | 2047   | 2048   | 2049   |
|----|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|    |                              |        |        |        |        |        |        |        |        |        |        |          |        |        |        |        |        |        |        |        |        |
| 1  | Capital Expenditures         |        |        |        |        |        |        |        |        |        |        |          |        |        |        |        |        |        |        |        |        |
| 2  | Pipe                         | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$10,241 | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    |
| 3  | Land Rights                  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 4  | Removal Costs                | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 5  | O&M Cost/Savings             | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 6  | Property Tax/Savings         | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 7  | Tax Savings                  | (61)   | (56)   | (51)   | (47)   | (44)   | (40)   | (37)   | (34)   | (31)   | (29)   | (27)     | (25)   | (23)   | (21)   | (19)   | (18)   | (16)   | (15)   | (14)   | (13)   |
| 8  | Annual Cash Flow             | (\$61) | (\$56) | (\$51) | (\$47) | (\$44) | (\$40) | (\$37) | (\$34) | (\$31) | (\$29) | \$10,215 | (\$25) | (\$23) | (\$21) | (\$19) | (\$18) | (\$16) | (\$15) | (\$14) | (\$13) |
| 9  | Discounted Cash Flow - 6.9%  | (\$18) | (\$16) | (\$14) | (\$12) | (\$10) | (\$9)  | (\$7)  | (\$6)  | (\$6)  | (\$5)  | \$1,579  | (\$4)  | (\$3)  | (\$3)  | (\$2)  | (\$2)  | (\$2)  | (\$1)  | (\$1)  | (\$1)  |
| 10 | Discounted Cash Flow - 10.0% | (\$11) | (\$9)  | (\$8)  | (\$6)  | (\$5)  | (\$4)  | (\$4)  | (\$3)  | (\$3)  | (\$2)  | \$708    | (\$2)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$0)  | (\$0)  |

# Net Cash Flow Summary (continued)

|    | Year (2050-2069)             | 2050   | 2051   | 2052   | 2053   | 2054   | 2055   | 2056  | 2057  | 2058  | 2059  | 2060  | 2061  | 2062  | 2063  | 2064  | 2065  | 2066  | 2067  | 2068  | 2069  |
|----|------------------------------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    |                              |        |        |        |        |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1  | Capital Expenditures         |        |        |        |        |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 2  | Pipe                         | \$0    | \$0    | \$0    | \$0    | \$0    | \$0    | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   | \$0   |
| 3  | Land Rights                  | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 4  | Removal Costs                | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 5  | O&M Cost/Savings             | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 6  | Property Tax/Savings         | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 7  | Tax Savings                  | (15)   | (14)   | (13)   | (12)   | (11)   | (10)   | (9)   | (8)   | (8)   | (7)   | (7)   | (6)   | (6)   | (5)   | (5)   | (4)   | (4)   | (4)   | (3)   | (3)   |
| 8  | Annual Cash Flow             | (\$15) | (\$14) | (\$13) | (\$12) | (\$11) | (\$10) | (\$9) | (\$8) | (\$8) | (\$7) | (\$7) | (\$6) | (\$6) | (\$5) | (\$5) | (\$4) | (\$4) | (\$4) | (\$3) | (\$3) |
| 9  | Discounted Cash Flow - 6.9%  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1)  | (\$1) | (\$1) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) |
| 10 | Discounted Cash Flow - 10.0% | (\$1)  | (\$0)  | (\$0)  | (\$0)  | (\$0)  | (\$0)  | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) | (\$0) |

|    | Net Cash Flow NPV (\$M) | 6.9% | 10.0% |
|----|-------------------------|------|-------|
| 11 | 60 Years (2010-69)      | 9.88 | 8.81  |
| 12 | 25 Years (2010-34)      | 8.36 | 8.13  |
Appendix I SHOREACRES AERIAL REPLACEMENT PROJECT ROUTE SELECTION ENVIRONMENTAL SCREENING REPORT JULY 15, 2009

# Shoreacres Aerial Replacement Project Route Selection

# **Environmental Screening Report**



Prepared for:



July 15, 2009

Prepared by:



#### Environmental Screening Report Table of Contents

| SUMM | ARY                      |                                                                                                                                                                            | iii                                          |
|------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1.0  | INTRO                    | DUCTION                                                                                                                                                                    | 1                                            |
|      | 1.1<br>1.2<br>1.3<br>1.4 | Project description<br>Objectives<br>Study team and methods<br>Report structure                                                                                            | 1<br>2<br>2                                  |
| 2.0  | ENVIR                    | ONMENTAL SETTING                                                                                                                                                           | 4                                            |
|      | 2.1<br>2.2<br>2.3        | Landforms and Physiography<br>Ecosystems<br>Regional land use                                                                                                              | 4<br>4<br>6                                  |
| 3.0  | ISSUE                    | S IDENTIFICATION AND ROUTE OPTION ASSESSMENT                                                                                                                               | 8                                            |
|      | 3.1                      | Biophysical considerations<br>Fish and fish habitat<br>Wildlife and wildlife habitat<br>Plants and plant communities                                                       | 8<br>8<br>. 13<br>13                         |
|      | 3.2                      | Land use and community considerations                                                                                                                                      | . 15                                         |
|      |                          | Existing Land Use<br>Planned Land Use<br>Agriculture<br>Forestry and related tenures<br>Major utility and transportation corridors<br>Domestic and irrigation water supply | 15<br>15<br>16<br>16<br>17                   |
|      |                          | Parks and protected areas                                                                                                                                                  | . 19                                         |
|      |                          | Recreation and tourism<br>Visual management<br>Guide outfitting<br>Trapping<br>Mining and mineral tenures<br>Contaminated sites                                            | 19<br>20<br>20<br>20<br>20<br>20<br>21<br>21 |
|      | 3.3                      | Archaeology and Heritage                                                                                                                                                   | . 22                                         |
| 4.0  | REGU                     | LATORY APPLICATIONS AND APPROVALS                                                                                                                                          | . 23                                         |
| 5.0  | ROUTI                    | E COMPARISON AND CONCLUSION                                                                                                                                                | .24                                          |
|      | 5.1<br>5.2               | Route comparison<br>Conclusion and recommendations                                                                                                                         | . 24<br>. 24                                 |
| 6.0  | REFEF                    | RENCES                                                                                                                                                                     | . 26                                         |

#### List of Tables

| Table 1 | Route options evaluated for the Shoreacres Aerial Replacement Project    | 1  |
|---------|--------------------------------------------------------------------------|----|
| Table 2 | Listed fish species in the Lower Kootenay and Slocan rivers              | 8  |
| Table 3 | Summary of FISS data for the Shoreacres Study Area                       | 9  |
| Table 4 | Water licences in the Shoreacres Project Area                            | 18 |
| Table 5 | Visual management polygons crossed by the Project                        | 20 |
| Table 6 | Trapping territories crossed by the Project                              | 21 |
| Table 7 | Terasen Gas Shoreacres Aerial Replacement Project-Route Comparison Table | 25 |

#### **List of Figures**

| Figure 1 | Shoreacres Aerial Replacement Project Route Options                  | 5 |
|----------|----------------------------------------------------------------------|---|
| Figure 2 | Shoreacres Aerial Replacement Project Recorded Fish Species 1        | 2 |
| Figure 3 | Active osprey nest on man-made nest platform structure–July 11, 2009 | 4 |

#### List of Appendices

| APPENDIX A | Annotated Photographs of the Shoreacro | es Project Area |
|------------|----------------------------------------|-----------------|
|------------|----------------------------------------|-----------------|

- APPENDIX B Species at Risk in the Shoreacres Regional Study Area
- APPENDIX C Details of Contaminated Site Information for Shoreacres Study Area

# SUMMARY

Environmental screening of six potential pipeline routes was done by Westland Resource Group for the Terasen Gas Shoreacres Aerial Replacement Project.

The objective of this work is to provide Terasen project planners with information for the evaluation and comparison of the environmental risks, significant project cost items and land use constraints along the route options under consideration.

As of July 9, 2009, four of the six route options were dropped due to the confirmation of unsuitable subsurface conditions for horizontal directional drilling (HDD). Accordingly, only the Large Angle Route Option and the TP/IP Route Option are assessed.

The Large Angle Route Option is considered to be the preferred option from an environmental and land use perspective because land disturbances will be minimal, there are fewer potential environmental risks (*e.g.*, contaminated sites and domestic water), and little or no new right-of-way will be required. This HDD crossing will not impact the fish or fish habitat resources of the Lower Kootenay River or Slocan River.

The TP/IP Route Option can be constructed with minor environmental or land use impacts. However, the environmental (contaminated sites and domestic water) risks, increased land use constraints and higher costs due to the increased length of this option make it a distant second choice.

# 1.0 INTRODUCTION

#### 1.1 **Project description**

Terasen Gas Inc. plans to replace the existing aerial pipeline crossing of the Kootenay River near Shoreacres, British Columbia. This aerial crossing will be replaced by a horizontal directional drill (HDD) crossing or attaching a new pipeline to the Blewett Road bridge structures near Bonnington Falls, British Columbia. These bridges are owned by the City of Nelson.

This aerial replacement project is part of the updating of the system reinforcement of Terasen Gas' Castlegar–Nelson Transmission Pipeline Project.

A new location for the proposed pipeline crossing is required because the existing Shoreacres aerial crossing and pipeline right-of-way cannot be used for an HDD, due to unfavourable subsurface ground conditions at the aerial crossing, and the presence of at least one archaeological site nearby.

Terasen Gas identified a total of six potential route options in May 2009. Five of these route options involve a directional drill crossing of the Kootenay River and one option will utilize existing bridge structures for crossing the Kootenay River.

The route options considered for this environmental screening project are presented in Table 1.

| Route Option     | Description                                                                                                                                                                                                                                                                                                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TP/IP Option*    | A route that uses existing bridge structures along Blewett Road. Approximately 8.85 km in length. The TP and IP routes are identical. However, the IP Option will operate at a lower pressure and a pressure reducing station will be required north of the Slocan River if the IP Route Option is selected. |
| Shoreacres North | An option that includes an HDD crossing of the Kootenay River south of Ward's Bay and a new pipeline connection along rural–residential roads of Shoreacres. Total length of new pipeline is approximately 3.89 km.                                                                                          |
| Shoreacres South | An HDD crossing of the Kootenay River south of the Slocan–Kootenay confluence.<br>The total length of new pipeline is approximately 2.06 km.                                                                                                                                                                 |
| Large Angle*     | An HDD crossing of the Kootenay River and the Slocan River near the existing aerial crossing. The total length of new pipeline is approximately 678 m.                                                                                                                                                       |
| Shallow Angle    | An HDD crossing closest to the existing aerial pipeline crossing. (Total length is approximately 457 m.)                                                                                                                                                                                                     |
| Lazaroff         | An HDD crossing approximately 2.5 km south of the Slocan River confluence. The total length of new pipeline is approximately 4.64 km.                                                                                                                                                                        |

| Table 1. | Route options | evaluated for the | Shoreacres | Aerial Replace | ement Project |
|----------|---------------|-------------------|------------|----------------|---------------|
|----------|---------------|-------------------|------------|----------------|---------------|

\* Highlighted route options were selected for further investigation by Terasen Gas on July 9, 2009. All other options have been dropped from further consideration.

The main project components include:

- construction work areas for the HDD entry (disturbed area approximately 20 m wide and 40 m long or 800 m<sup>2</sup>;
- containment berms, ditches;
- equipment staging areas;
- two test drill sites (disturbed area approximately 30 m<sup>2</sup>)
- access roads/shoo-flys;
- new right-of-way and temporary workspace (if required);
- tie-ins to existing pipeline; and
- access to decommissioning and disassemble the towers and the existing aerial pipeline crossing.

# 1.2 Objectives

This environmental screening report has been prepared to provide the information necessary to evaluate and compare the environmental risks, significant project cost items and land use constraints along the various route options under consideration. The information contained in this report will be used by Terasen Gas project planners and will serve as a foundation for the BCUC/CPCN Application and the environmental permitting process for the preferred route option.

# 1.3 Study team and methods

#### **Study Team**

Data assembly, analysis, and report preparation work was completed by WRG Westland Resource Group Inc. personnel of Victoria, British Columbia with assistance from Eaglevision Geomatics & Archaeology of Cranbrook, British Columbia.

Key project team members include:

Westland Resource Group

- Wayne G. Biggs, M.Sc., P.Ag., R.P.Bio., Project Leader
- Carmen I. Holschuh, M.Sc., R.P.Bio., Biologist
- Rahul Ray, M.R.M., Environmental Planner
- Julia M. Roberts, B.Sc., Biologist
- Steve Young, M.E.S., GIS Specialist

Eaglevision Geomatics & Archaeology Ltd.

- Melissa Knight
- Wayne Choquette

#### Methods

Existing published and online information on the biological resources, land and water resources, and archaeology of the Shoreacres Project area was collected and reviewed. Specifically, government databases were searched for information about fish, fish habitat, wildlife, wildlife habitat, domestic water wells, land tenures, and surface water. Municipal, regional, and provincial land use plans were also reviewed for relevant information. Land status (Crown versus Private) and agricultural land information was assembled for all route options.

Aerial photographs and Google Earth images were examined and registered contaminated site information for the Shoreacres and Glade area was obtained through a BC Site Registry Search.

A field reconnaissance of the route options was conducted on June 3, 2009. Ground level photographs of the various route options were taken in June 2009. These photographs are presented in Appendix A.

Telephone interviews with planning staff from the City of Nelson and the Regional District of Central Kootenay (RDCK) were conducted in early July 2009.

No landowner discussions or First Nations discussions were conducted for this screening level investigation.

An Archaeological Overview Assessment (AOA) of the route options, with an emphasis on the riparian areas adjacent to the proposed HDD entry and exit points, was conducted by Eaglevision Geomatics & Archaeology Ltd. on July 9 and 10, 2009.

#### 1.4 Report structure

This environmental screening report is presented in six sections. Section 2, following this introductory material, contains an overview of the environmental setting of the Shoreacres Project area and provides relevant regional information. Section 3 contains information on the biological resources and various land uses along the route options. This section of the report also outlines key findings of the archaeological overview conducted in July 2009, and a 2008 archaeological investigation near the existing Shoreacres aerial crossing. Section 4 presents a high-level review of the regulatory agency authorizations and environmental approvals required for the Project, and Section 5 contains a route comparison table. References are contained in Section 6.

# 2.0 ENVIRONMENTAL SETTING

The Shoreacres Project Area is primarily located in the Regional District of Central Kootenay, along the Lower Kootenay River near the confluence of the Slocan River. A segment of the TP/IP Option is located in the City of Nelson municipal boundary. The rural residential communities of Shoreacres and Glade are the closest populated areas. Shoreacres is located on the west bank of the Lower Kootenay River just north of the confluence of the Slocan River. The community is approximately 22 km west of Nelson, British Columbia, along Highway 3A. Glade is located on the east bank of the Lower Kootenay River just south of the confluence of the Slocan River. Southeast from Highway 3A about 24 km west of Nelson. The locations of both communities are shown on Figure 1.

# 2.1 Landforms and Physiography

The Shoreacres Project Area is located in the Columbia Mountains and Southern Rockies physiographic region (Valentine et al, 1978) of southeastern British Columbia. From east to west, the Columbia Mountains consist of the Purcell, Selkirk, and Monashee Ranges. The Bonnington Range, a sub-range of the Selkirk Mountains, lies to the east of the Lower Kootenay River. The range consists of bedrock smoothed by ancient glaciers and rising to 2,318 m at the summit of Siwash Mountain. To the west of the Lower Kootenay River is Slocan Ridge, which forms the northeast boundary of the Slocan River valley. In the project area, the Lower Kootenay and Slocan Rivers are at an elevation of about 500 m. Alluvial deposits are found along the banks of both rivers. At Shoreacres, Glade and along the lower reaches of the Slocan River, lithology from water wells shows the presence of sand and gravel to depths as great as 70 m.

### 2.2 Ecosystems

The Shoreacres Project Area lies within the Interior Cedar Hemlock (ICH) biogeoclimatic zone which is characterized by coniferous forests where western red cedar and western hemlock predominate, but ponderosa pine, Douglas fir, lodgepole pine, white pine, subalpine fir, spruce, and western yew are also found (Egan *et al.*, undated). The project area falls within the moist wet subzone of Interior Cedar Hemlock zone (ICHmw), where plants such as falsebox, twinflower, queen's cup, and black huckleberry are characteristic. Red-stemmed feathermoss and step moss are the most common mosses in this subzone (Ketcheson *et al.*). On the west side of the Lower Kootenay River most of the native vegetation has been cleared or highly disturbed by hydroelectric projects, transportation corridors, and residential development.



# 2.3 Regional land use

The land uses in the Shoreacres Project Area include hydro-electricity generation, transportation, residential subdivisions, large-lot residential use, small farms, commercial buildings, and industrial operations.

Upstream of the Shoreacres Project Area, the Lower Kootenay River has been modified by construction of five hydro-electric generating sites. Traveling downstream from Nelson, the facilities are the Corra Linn Dam (1932), Upper Bonnington Falls (1905), Lower Bonnington Falls(1897), Kootenay Canal Generating Station (1976), and South Slocan Dam (1929). The Corra Linn Dam was the first concrete storage dam built on the Lower Kootenay. The powerhouses at Upper and Lower Bonnington and South Slocan are essentially run-of-river operations as water is not stored at those locations. The Kootenay Canal diverts water from just downstream of the Corra Linn Dam and directs it through a generating station returning it to the Lower Kootenay River at South Slocan (Touchstones Nelson, 2007). The South Slocan Dam can be seen from the north end of Shoreacres.

When the South Slocan Dam was constructed by West Kootenay Power and Light (WKPL), the predecessor of FortisBC, additional facilities were constructed including worker housing, a recreation hall, maintenance shops, and railway spurs. In time, this area became the operational hub for the five Kootenay River plants operated by WKPL and the centre for power line maintenance (Touchstones Nelson, 2007). A FortisBC powerline runs along the west side of the Lower Kootenay River and a substation is located just east of the intersection of Highway 3A and Sentinel Road.

A pole yard, used for treating power poles with preservatives was used during the construction of the South Slocan Dam. The pole yard came to the attention of the MoE in 1991. Over the years, there have been many investigations of soil and groundwater contamination resulting from wood treatment. In the fall of 2007, a notice of independent remediation was submitted to MoE on behalf of FortisBC. The BC Site Registry listed the site as "Active–Under Remediation" on May 31, 2009.

To the west of the Lower Kootenay River, Highway 3A and the Canadian Pacific Railway tracks follow the river valley. At Glade, a cable ferry connects the east and west sides of the river.

The ballast beneath the railway tracks in the project area is a mixture of angular, rust-coloured rock and grey gravel. The rust-coloured rock is probably float rock from the Sullivan Mine at Kimberley. This rock was used extensively for railroad ballast from the late 1940's into the 1990's, and has been shown to leach lead at a rate that classifies it as hazardous waste under the BC Hazardous Waste Regulation.

Rural residences are found in the project area in the Village of South Slocan, a subdivision at Sentinel Road, subdivisions near the Slocan Junction (Highway 3A and Highway 6), Shoreacres, and Glade. The lots in Shoreacres and Glade are large and lend themselves to hobby farms and market gardens. Kootenay River Farm Co. in Shoreacres, Glade Valley Gardens, and Glade Mountain Farm are certified organic vegetable and fruit farms.

A few businesses are located just east of the Slocan Junction including a credit union, general store and post office, a heli-skiing operation, and a mobile café.

Industrial land uses are found just north of the Slocan Junction on Highway 3A, where Selkirk Truss and Gold Island Forest Products are located. Selkirk Truss manufactures engineered floors and roof truss systems, and Gold Island Forest Products mills lumber from flooring and decking to dimension lumber and timbers.

# 3.0 ISSUES IDENTIFICATION AND ROUTE OPTION ASSESSMENT

# 3.1 Biophysical considerations

#### Fish and fish habitat

The Lower Kootenay River, the Slocan River, and tributaries in the project area provide habitat for several fish species. The Fisheries Information Summary System (FISS) maintained by MoE indicates that between 1961 and 2003, 32 fish species were observed in the Lower Kootenay River, and between 1986 and 2005, 18 species were found in the Slocan River. Of the tributaries of the Lower Kootenay River in the project area, only Rover Creek and Glade Creek are reported to support fish (rainbow trout in both cases).

The fish species observed in the project area include sculpins, suckers, five species of trout, burbot, whitefish, walleye, and yellow perch. Many species are native, but hatchery-produced rainbow trout have been released into the rivers repeatedly over the years. Cutthroat trout and brook trout have been released less often.

Of the fish species found in the Lower Kootenay and the Slocan Rivers, two are on the provincial red list indicating that they are endangered or threatened with extinction, and three are on the provincial blue list indicating that they are vulnerable to habitat changes (Beardmore, undated). Table 2 below summarizes the listed species in the project area.

|                   |                            | Provincial | Provincial |                                     |
|-------------------|----------------------------|------------|------------|-------------------------------------|
| Common Name       | Scientific Name            | Rank       | Listing    | Observed in                         |
| Umatilla Dace     | Rhynichthys<br>umatilla    | S2         | Red        | Lower Kootenay and<br>Slocan rivers |
| White Sturgeon    | Acipenser<br>transmontanus | S1         | Red        | Lower Kootenay River                |
| Bull Trout        | Salvelinus<br>confluentus  | S3         | Blue       | Lower Kootenay and<br>Slocan rivers |
| Mottled Sculpin   | Cottus Bairdi              | S3         | Blue       | Lower Kootenay River                |
| Shorthead Sculpin | Cottus confusus            | S3         | Blue       | Slocan River                        |

White Sturgeon in the Lower Kootenay River and the nearby Columbia River are the focus of the *White Sturgeon Recovery Initiative*, which began in 2000.

The fish and fish habitat resources of the Lower Kootenay River and Slocan River near Shoreacres have been documented by several consultants and Ministry of Environment staff. The Fisheries Information Summary System (FISS) database maintained by the BC Ministry of Environment and the Ecological Reports Catalogue (EcoCat) database searches revealed the following fish information:

|                          |                | Dates of FISS |                |                  |
|--------------------------|----------------|---------------|----------------|------------------|
| Stream                   | Watershed Code | Records       | No. of Records | No. of Species   |
| Lower Kootenay<br>River  | 340            | 1961–2003     | 94             | 32               |
| Slocan River             | 340-047200     | 1986–2005     | 57             | 18               |
| Smoky Creek              | 240-061900     | _             | 0              | Non fish-bearing |
| Rover Creek <sup>1</sup> | 340-062200     | 1976–1996     | 4              | 1                |
| Glade Creek <sup>2</sup> | 340-033800     | 1994          | 1              | 1                |

Table 3. Summary of FISS data for the Shoreacres Study Area

<sup>1</sup> Not crossed by Shoreacres North Route option, but access routes leading to the HDD site and new ROW will cross Rover Creek.

<sup>2</sup> Glade Creek is located approximately 2.5 km south of the Lazaroff option and is unlikely to be affected by pipeline construction.

The fish and fish habitat resources of the watercourses crossed by the route options are presented below.

#### **Smoky Creek**

- Smoky Creek is located at South Slocan and is used as a community water supply. The creek appears to cross the TP Option just after it crosses the railway at Blewett Road.
- The report text states, "A fish and fish habitat assessment, conducted in 1998, confirmed that no fish were present in the Smoky Creek watershed" (Masse, 2001).
- The TP/IP Option would pass downstream of water intakes on Smoky Creek.

#### **Rover Creek**

Rover Creek is known to support resident rainbow trout (*Oncorhynchus mykiss*) in the lower reaches although no fish were captured in the upper reaches (FISS, 1997). Rover Creek was stocked from 1942 to 1945 with rainbow trout. It is unknown whether this creek once supported migrating fish from the Kootenay River. Access to Rover Creek was eliminated following construction of the Kootenay Canal. The dominant Rover Creek channel type is cascade-pool and step-pool. Fish productivity is low to moderate due to limited deep overwintering habitat (Johnston and Slaney, 1996), and a surplus of active sediment within the system creating constant morphological fluctuation among habitat units. Deep pools are rare and those that are

available are at risk to in-filling during conditions of high sediment transport such as during spring freshet. Fish size is typically small in this type of stream; (*i.e.*, <30 cm). A short growth period due to elevation and temperature, low nutrients, high gradient and limited good quality habitat all limit the ability of this type of stream to support larger fish and in large numbers.

• The most northerly portion of the Shoreacres North Route Option does not cross the Rover Creek. However, access to the Shoreacres North HDD site and new pipeline right-of-way will cross Rover Creek.

#### Brilliant Headpond (Kootenay River to the Slocan River confluence)

The study area known as the Brilliant Headpond extends upstream from the Brilliant Dam to the Kootenay Canal Generating Station and, therefore, includes the Shoreacres Study Area. A report prepared by Golder Associates (Golder, 2002) describes the study area as follows: "South Slocan Dam and the Kootenay Canal Plant form the upstream boundary of Brilliant Headpond. The 1.0 km section below these powerplants consists of a fast flowing and deep channel, confined by a narrow canyon with steep bedrock banks. Abundant instream cover for fish is available although littoral area is limited and macrophyte growths are sparse. Below the outlet of the canyon, the valley opens up into the Wards Bay area, the widest point (approximately 1.0 km) in the headpond. Slocan Pool, situated in the upper section of the Wards Bay area, is a large scour hole formed at the outlet of the confined canyon section, with depths to 20 m. At the downstream end of this area, the headpond is generally shallow (maximum depths of 10 m to 12 m) and exhibits a braided channel form with a treed island and shallow shoals. Extensive macrophyte growth occurs in the area in the late spring to late fall period. Downstream from Wards Bay, the headpond narrows and deepens. The Slocan River, the main tributary to the headpond, enters on the west bank. Resident populations of rainbow trout, bull trout, and mountain whitefish are present in the Slocan system. The headpond from the mouth of the Slocan River downstream to the forebay of Brilliant Dam exhibits similar habitat characteristics. Maximum depths range from 10 m to 20 m, and most of the banks are steeply sloped. Extensive growths of macrophytes form dense weed beds along both shoreline margins, with the width of these beds dependent on shoreline slope. Velocities throughout the area are low to moderate.

The importance of the Slocan River to headpond resident rainbow trout and the contribution to the headpond fishery by populations in the river has recently been investigated. In a concurrent study, radio tagged rainbow trout were tracked weekly for a period of one year to observe movement patterns within the headpond as well as patterns of entrainment through Brilliant Dam. In addition to the Slocan River, five small tributaries flow into the headpond (three on the east shore and two on the west shore). These streams exhibit precipitous lower reaches and, except for McPhee,

Little McPhee, and Glade creeks, are intermittent streams that contain flow only during spring runoff or high precipitation events."

• Although McPhee and Glade creeks have fish habitat potential, these creeks are all south of the east-west portion of the Lazaroff Option and, hence, there appears to be no fish habitat concerns in creeks in that area.

The general location of important fish habitat in the Shoreacres Study Area are presented in Figure 2.

The fish habitat values are high near Wards Bay and at the confluence of the Slocan and Kootenay rivers. However, no fish or fish habitat impacts are anticipated for any of the route options as no in-stream work will be required for the HDD or bridge crossings.



#### Wildlife and wildlife habitat

The Shoreacres area is largely valley bottom wildlife habitat that has been highly modified by the community of Shoreacres, roads, railways, logging and numerous utility rights of way. The wildlife habitat values near the community of Shoreacres and Glade are high.

Typical wildlife species in the area include moose, mule deer, grizzly and black bear, gray wolf, lynx, and Columbian ground squirrel. Near the river, beaver and muskrat may also be found. An active osprey nest was observed using a man-made nest platform at the confluence of the Slocan River (Figure 3). Other birds in the area include Bald Eagle, American Kestrel, Blue Grouse, Ruffed Grouse, Mountain Bluebird, and other songbirds. A number of amphibian and reptile species may occur in riparian areas near the Kootenay River, including western terrestrial garter snake, northern alligator lizard, rubber boa, western skink, western toad, and pacific tree frog.

The project routes occur in ungulate winter range for mule deer. There are no recorded occurrences of provincially red or blue-listed or COSEWIC listed wildlife species that occur along the route options. A number of records of western skink (provincially blue-listed, COSEWIC special concern) occur within 500 m of the TP/IP route option.

Both the TP/IP and Large Angle route options have low wildlife habitat values, because they occur within settled areas and adjacent to existing disturbances. Wildlife habitat can be restored after installation of the new crossing has been completed by using native plants to provide forage and cover, and replacing any wildlife habitat attributes that may be disturbed (such as an osprey nesting platform).

#### Plants and plant communities

There are no records of rare plants or rare plant communities in the Shoreacres area. Much of the route options occur in previously disturbed areas. Little removal of mature native plant communities is anticipated for either route option.





Figure 3. Active osprey nest on man-made nest platform structure – July 11, 2009.

# 3.2 Land use and community considerations

#### **Existing Land Use**

The TP/IP option is primarily located in existing rights-of-way (ROWs), along roads, rail lines, and transmission lines. The following general land uses were identified in the vicinity of the TP/IP option during a field reconnaissance:

- A subdivision at Sentinel Road contains residential property that includes an in-home hair dresser.
- Land immediately east of the junction of Highway 3A and Highway 6 includes residential property, and commercial operations, including a credit union, heli-skiing office, general store, and mobile café.
- A residential subdivision is located just south of the junction of Highway 3A and Highway 6. Residents park their trucks, boats, and trailers on the Fortis ROW. A greenhouse was also identified on the ROW.
- From the above noted subdivision to the community of Shoreacres, land use is primarily farms and forests.
- From the TP/IP option rail crossing to the connection with the existing pipeline, the land is rural residential and open space.
- Rural and suburban residences are located adjacent to the transmission ROW in which the TP/IP option would be constructed. Construction phase noise, dust, and traffic effects could be expected.

The segment of the Large Angle option on the east side of the Kootenay River is located in a forested area adjacent to major transmission lines. The Large Angle option would involve a HDD crossing of the Kootenay River that would connect with the existing pipeline on Terasen property on the east side of the River.

#### **Planned Land Use**

The TP/IP option crosses the jurisdictional boundaries of the City of Nelson and the Regional District of Central Kootenay. The City of Nelson Official Community Plan (OCP) identifies the portion of the TP/IP option in the City of Nelson as PU or Public Utility Lands. Discussion with Dave Wahn, Senior Planner with the City of Nelson confirmed the public utility designation. He did not identify potential issues with constructing the project in the TP/IP alignment in the City of Nelson. He noted that discussion with the road maintenance department would be useful as the project progresses.

The TP/IP option is located in existing ROWs in Electoral Areas H and I. Based on a review of the RDCK Property Information and Mapping System (PIMS), adjacent land uses are primarily

designated as rural and suburban residential. Some commercial and industrial lands are also found in the vicinity. Discussion with Ramona Mattix, Manager of Development Services for the Regional District of Central Kootenay, did not identify any significant issues with constructing the TP/IP option, given the alignment in existing ROWs. She noted concern about potential highway traffic disruptions, due to the high volume of traffic between Castlegar and Nelson.

No OCP designation was identified for lands around the Large Angle Option on the east side of the Kootenay River. The zoning map identifies the area as Open Space. The Terasen property on the west side of the river is zoned as residential. Discussion with Ms. Mattix did not identify potential issues with the Large Angle Option.

The TP/IP and Large Angle options are located in the Kootenay-Boundary Higher Level Plan boundary. The provincial plan outlines broad management direction for provincial Crown lands. A review of the land use designations in the Kootenay Boundary Land Use Plan Implementation Strategy identified broad management direction related to human settlement, ungulate winter range, ecosystem restoration, biodiversity, and visual management. The use of HDD to cross the Kootenay River for the Large Angle option will minimize the level of physical disturbance, and as a result no potential conflict with the strategic level land use plan is expected. Construction of the TP/IP option in existing ROWs would limit potential conflicts with the broad management direction in the land use plan.

#### Agriculture

The TP/IP option will be primarily located in existing road, rail, and transmission line rights-ofway. A segment of the TP/IP route is located adjacent to rural residential properties, where agricultural activity may occur. The location of the TP/IP route in existing ROWs suggests disturbance to adjacent agricultural operation would be minimal.

The Large Angle route would be located under forested land on the east side of the Kootenay River, and land owned by Terasen Gas on the west side of the river. The Large Angle route will not cross agricultural land.

Neither the TP nor the Large Angle routes cross designated Agricultural Land Reserve (ALR) lands.

#### Forestry and related tenures

The TP/IP route crosses the boundary of two forest districts. The section of the route on the east side of the Kootenay River, including Blewett Road, is located in the Kootenay Lake Forest District. The segment on the west side of the river is in the Arrow Boundary Forest District.

The location of the TP/IP route in existing ROWs along linear corridors limits the potential impacts on forest resources.

The Large Angle option is located under forested lands on the east side of the Kootenay River. Restrictions may exist for forestry operations on the area above the route, but this will need to be confirmed.

The TP/IP and Large Angle routes do not cross any identified woodlots or old growth management areas (OGMAs) as identified in the British Columbia database.

#### Major utility and transportation corridors

The TP/IP and Large Angle routes are primarily located in defined, long-established utility and transportation corridors.

The TP/IP Option will be located in the following rights-of-way:

- Blewett Road
- Rail corridor
- Transmission line corridor
- Municipal roads

The TP/IP Option would involve an underground crossing of Highway 3A and rail lines on the west side of the Kootenay River. Construction of the TP/IP route would introduce construction phase impacts on traffic where the Project was constructed under or adjacent to roads. For much of the route, the TP/IP option would be located adjacent to a transmission line.

The Large Angle route will depart from a transmission line on the east side of the Kootenay River. No major utility or transportation corridors will be crossed.

#### Domestic and irrigation water supply

Water needs for homes, farms, and light industry in the Shoreacres Project Area are met with a combination of groundwater and surface water from tributaries of the Lower Kootenay River. A review of the BC Water Resources Atlas managed by the Water Stewardship Division of the BC Ministry of Environment (MoE) shows that homes north of Shoreacres towards the Blewett Bridge use groundwater wells except in the Village of South Slocan where there is a community water supply taken from Smoky Creek. In Shoreacres and around the Slocan Junction north of Shoreacres, groundwater wells are the most common water source. The database shows that residents of Glade use both groundwater wells and streams flowing down the slopes to the east of the community. (See Figure 1)

The wells at Shoreacres and Slocan Junction draw from the Crescent Valley Aquifer, which is described by MoE as a sand and gravel aquifer with moderate productivity and moderate demand. No aquifer mapping has been done for Glade. Most of the wells on the map are in sand and gravel, but one bedrock well was noted.

The Water Licences registered for the area are presented in Table 4.

|          | Water Licence        | Stream      |                                  |               |
|----------|----------------------|-------------|----------------------------------|---------------|
| Location | Holder(s)            | Name        | Purpose and No. of Licences      | Quantity      |
| South    | Regional District of | Smoky Creek | Waterworks – Local Authority (2) | 32,850,000 GY |
| Slocan   | Central Kootenay     |             |                                  |               |
| South    | Private citizen      | Smoky Creek | Domestic (1)                     | 500 GD        |
| Slocan   |                      |             |                                  |               |
| South    | BC Hydro             | Rover Creek | Public Facilities (1)            | 5000 GD       |
| Slocan   |                      |             |                                  |               |
| South    | FortisBC             | Rover Creek | Waterworks (other) (1)           | 25000 GD      |
| Slocan   |                      |             |                                  |               |
| Glade    | Private citizens     | Shore Creek | Domestic (8)                     | 4000 GD total |
|          |                      |             | Irrigation (10)                  | 9.22 AF total |
| Glade    | Glade Irrigation     | Glade Creek | Irrigation – Local Authority.(1) | 300 AF        |
|          | District             |             | Waterworks Local Authority (2)   | 29,565,000 GY |

| Table 4. | Water | licences | in th | e Shoreacre | s Project Area |
|----------|-------|----------|-------|-------------|----------------|
|----------|-------|----------|-------|-------------|----------------|

GY = gallons per year

GD = gallons per day

AF = acre-feet

The location of domestic water wells and points of diversion (PODs) for domestic and irrigation water are shown on Figure 1.

The number of wells and PODs within 50 m of each route option are as follows:

| <u>Wells</u> | <b>PODs</b>                                |
|--------------|--------------------------------------------|
| 5            | 0                                          |
| 0            | 0                                          |
| 0            | 0                                          |
| 0            | 3                                          |
| 5            | 1                                          |
| 0            | 0                                          |
|              | <u>Wells</u><br>5<br>0<br>0<br>0<br>5<br>0 |

#### Parks and protected areas

No Provincial Parks or protected areas are crossed by any of the six options.

No regional or municipal parks were identified that would be affected by construction of operation of the TP/IP or Large Angle options.

#### **Recreation and tourism**

Discussion with the Manager of Development Services, Regional District of Central Kootenay (Mattix, pers. comm.), identified that the north bank of the Slocan River, at the confluence with the Kootenay River, is a well-used beach area. She stated that the parcel is owned by Cominco, and may be leased to the RDCK for recreational use. The parcel is zoned as R2I, Country Residential.

Based on preliminary routing maps, the Large Angle route will be located under a portion of the property, before reaching the Terasen property on the south bank of the Slocan River. Physical disruption of the beach use area is not expected to occur, due to the HDD crossing of the river.

A map reviewed for this study identified the Trans Canada Trail as being located in the transmission line right-of-way on the east side of the Kootenay River. A review of the Trans Canada Trail website (<u>http/IP://www.tctrail.ca/tlocator/tlocator\_en.html</u>) did not identify this segment of the trail as part of the Trans Canada trail. The Large Angle route would depart from the transmission line ROW, as the existing Terasen pipeline shares the same alignment. Construction of the Large Angle option would require working space near the trail, but continued recreational access to the trail would be expected during the construction period.

Recreational fishing activity occurs in the Kootenay River for rainbow, cutthroat, ling cod, and bull trout (Ernst 2008). Fishing times occur between May and June, and August through October. A popular fishing location is identified at the Slocan Pool, where the Slocan River meets the Kootenay River. No fish or fish habitat impacts are anticipated for any of the route options as no in-stream work will be required for the HDD or bridge crossings.

Rafting also occurs in the Slocan and Kootenay Rivers. An "expert" section is identified as being located between Crescent Valley and the bridge on Highway 3A. A raft take-out area is identified at the junction of the Slocan and Kootenay Rivers. The project would not be expected to disrupt rafting activities.

#### Visual management

The provincial government has established visual management zones across British Columbia, including in the Project area. Visual management zones exist on east and west sides of the Kootenay River. The Large Angle project crosses an identified visual management polygon on both sides of the river (Table 5). The TP/IP option does not cross any visual management zones.

| Route Option | Partial Retention<br>(m) | Modified<br>(m) | Notes                                      |
|--------------|--------------------------|-----------------|--------------------------------------------|
| TP/IP Option | 0                        | 0               | N/A                                        |
| Large Angle  | 290                      | 0               | Approximately 115 m<br>in residential area |

Table 5. Visual management polygons crossed by Project

The Large Angle would be constructed as an HDD across the Kootenay River, resulting in minimal visual disturbance. Work space would be required to construct the Large Angle option, however the workspace required is small, and is not expected to introduce concern in the Partial Retention visual management zone. On the west side of the river, the Large Angle project will be located in a cleared area.

The replacement of the highly visible existing aerial crossing of the Kootenay River with an underground crossing is anticipated to be an improvement in the level of visual quality.

#### **Guide outfitting**

A review of provincial guide outfitting tenure information revealed that none of the six options are located in a guide outfitting territory.

#### Trapping

A review of the provincial database revealed that the six options are located in provincially managed trapping territories. The trapping territories crossed by the various options are identified in Table 6.

| Route Option     | TR0408T008 | TR0408T007 | TR0415T003 |  |
|------------------|------------|------------|------------|--|
| TP/IP Option     | Х          | Х          | Х          |  |
| Shoreacres North |            | Х          | Х          |  |
| Shoreacres South |            | Х          | Х          |  |
| Shallow Angle    |            | Х          | Х          |  |
| Lazaroff         |            | Х          | Х          |  |
| Large Angle      |            | Х          | Х          |  |
|                  |            |            |            |  |

#### Table 6. Trapping territories crossed by the Project

The TP/IP Option crosses the boundaries of three trapping territories, and the Large Angle Option crosses three. These are large areas that typically include a range of habitat types.

The TP/IP option is primarily located along existing linear corridors in a industrial and developed area. Extensive trapping activity is not likely to occur. Potential impacts of constructing the TP/IP option are limited.

A short segment of the Large Angle route will cross forested habitat on the east side of the Kootenay River. The use of an HDD technique will minimize disruption to forested habitat. Temporary working space will be required for project construction, but this site will be small, and is expected to introduce limited disruption to wildlife habitat.

#### Mining and mineral tenures

Based on a review of the provincial database, the TP/IP and Large Angle routes will not cross mineral or placer claims. No coal tenures were identified in the study area.

#### **Contaminated sites**

Detailed field investigations of contaminated sites in the Shoreacres Study Area were not conducted.

The firm of Gillespie Renkema Barnett Broadway LLP of Kamloops were retained to perform a search of the BC Site Registry in a 5 km circle around the centre of Shoreacres Study Area. The search revealed eight sites that had been investigated by MOE for possible site contamination issues. The sites had been investigated and remediated, if necessary, resulting in all eight sites having a status of "Assessment complete" or "No Further Action". MOE does not consider a site as requiring "No Further Action" until both on-site contamination and off-site migration of contamination have been remediated. Hence, it is unlikely that any of the eight sites would have any impact on the proposed pipeline crossings or route options. The locations of known

contaminated sites in the Shoreacres Project area are presented in Figure 1. Details of the site registry search are contained in Appendix B.

The main environmental contamination concern expected in the Shoreacres Study Area is related to disturbance of the Kimberley float rock that has been used for railway ballast. Float rock from the Sullivan Mine at Kimberley, British Columbia was used as railroad ballast by the Canadian Pacific Railway (CPR) starting in 1947. Float rock is identified in the field as angular, rust-coloured rock. (See Appendix A, photos 1 and 2). This material has a high iron content and has been found to leach lead at a rate that classifies it as a hazardous waste under the BC Hazardous Waste Regulation.

Float rock could be encountered along the TP/IP Route Option and possibly for the Shoreacres North Option. All other route options will not involve crossing of the CPR's Nelson subdivision or the Slocan spur of the Nelson–Castlegar rail line, and no contaminated site issues were identified for:

- Lazaroff Route Option,
- Shoreacres South Option,
- Shallow Angle Route Option, and
- Large Angle Route Option.

Site contamination due to spills of hydrocarbons and wood preservatives have a higher probability along the TP/IP Option and the Shoreacres North Option. No hydrocarbon or chemical spill sites were identified for the other four options.

### 3.3 Archaeology and Heritage

Eaglevision Geomatics & Archaeology Ltd. have assessed the archaeological potential of the existing Shoreacres Aerial Crossing in November 2008. Eaglevision's archaeologists reexamined this location and other route options in early July 2009. The findings of the 2008 investigation, centered on the HDD crossing site south of the Slocan River, was that "the proposed developments are to be situated within disturbed and/or boulder bar landforms considered to be inconsistent with the potential for archaeological resources. Thus no archaeological materials were observed, recorded or are otherwise suspected within the area of the identified development boundaries." (Eaglevision, 2008)

The location of registered archaeological sites in the Shoreacres Project Area, as determined by Eaglevision in 2008, are presented on Figure 1.

The results of the July 2009 archaeological overview were not available for this report.

# 4.0 REGULATORY APPLICATIONS AND APPROVALS

The proponent anticipates that the Shoreacres Aerial Replacement Project will not require an Environmental Assessment Certificate pursuant to the British Columbia *Environmental Assessment Act*. However, the project will likely require a screening under the *Canadian Environmental Assessment Act (CEAA)* as a result of the authorizations that may be required to comply with provisions of the *Fisheries Act* and *Navigable Waters Protection Act*.

Specific aspects of the construction and operation of the Project will require permits, licences, and approvals commensurate with the *Oil and Gas Commission Act*, administered by the BC Oil and Gas Commission.

The project will require a BC Utilities Commission (BCUC) Certificate of Public Convenience and Necessity (CPCN).

Federal Agencies with regulatory interests will likely include: CEAA, Fisheries and Oceans Canada (DFO), Transport Canada, and Environment Canada.

The decommissioning and demolition of the existing aerial crossing may trigger regulatory agency interest. The approvals for the decommissioning plan will likely be coordinated by the Oil and Gas Commission.

The TP/IP Route Option is expected to be the most challenging option from a regulatory agency approval perspective due to its length and complexity (*e.g.*, railway crossings, use of road rights-of-way, private land issues, etc.). Approvals for the Large Angle Option are expected to be less complicated and potentially less costly to obtain.

# 5.0 ROUTE COMPARISON AND CONCLUSION

#### 5.1 Route comparison

The environmental features and issues identified for the six potential route options for the Shoreacres Aerial Replacement Project are presented in Table 7.

#### 5.2 Conclusion and recommendations

The environmental screening indicates that the route option with the lowest environmental risk and lowest number of land use constraints is the Large Angle Route Option. The TP/IP Option is a viable, but distant second choice due to the higher potential of encountering Kimberley float rock ballast at the railway crossings, the considerably longer length, traffic disruptions along rural roads and highways, and higher potential to disturb domestic water wells and surface water supplies. Approximately 8.8 km of new right-of-way will be required for the TP/IP Option. This could significantly increase the cost of the project.

#### Recommendations

Once a preferred route is selected site-specific environmental and land use information should be assembled for use in the preparation of the BCUC Application and numerous environmental permits and authorizations.

#### Table 7. Terasen Gas Shoreacres Aerial Replacement Project–Route Comparison Table

| ROUTE OPTION<br>IDENTIFICATION | LENGTH<br>(m) | CROSSING<br>METHOD | FISH AND<br>FISH<br>HABITAT<br>VALUE | APPROXIMATE<br>AREA OF<br>CLEARING<br>REQUIRED                               | WILDLIFE AND<br>WILDLIFE<br>HABITAT VALUE                                         | Number of<br>RECORDED<br>ARCHAEOLOGICAL<br>SITES WITHIN 50m<br>(based on<br>archaeological data<br>provided by<br>Terasen) | Number of<br>Active<br>CONTAMINATED<br>SITES<br>RECORDED<br>Within 50 m                          | DOMESTIC<br>WATER.<br>Number of<br>Active Points of<br>Diversion or<br>Wells within<br>50 m | LAND USE or<br>SOCIO-ECONOMIC<br>CONSTRAINTS                                                                                               | Length of<br>CROWN<br>LAND<br>CROSSED<br>(m) | Length of<br>PRIVATE<br>LAND<br>CROSSED<br>(m) | WORK WINDOWS AND<br>RESTRICTED<br>ACTIVITY PERIODS          | Anticipated<br>ENVIRONMENTAL or<br>SCHEDULE RISKS |
|--------------------------------|---------------|--------------------|--------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|
| TP/IP Option                   | 8,850         | Bridge             | N/A                                  | Approximately<br>38,000 m <sup>2</sup><br>adjacent to roads<br>to be cleared | Low: area is highly<br>disturbed and little<br>wildlife habitat value<br>remains. | 1                                                                                                                          | 1 parcel with a<br>contaminated site<br>is within 50 m.<br>1,800 m of rail<br>bed is within 50 m | 5 (wells)                                                                                   | Construction phase<br>disturbance to<br>suburban and rural<br>residential properties;<br>traffic disruption;<br>cross recreational<br>area | 1,036 m                                      | 4,492 m                                        | None – assumed no clearing required.                        | High                                              |
| Shoreacres South               | 2,058         | HDD                | High                                 | 18,750 m <sup>2</sup> forest<br>and riparian to be<br>cleared                | Moderate                                                                          | 1                                                                                                                          | 0                                                                                                | 0                                                                                           | N/A                                                                                                                                        |                                              |                                                | Clearing Restriction<br>May 1 to July 31<br>(nesting birds) | Moderate                                          |
| Lazaroff                       | 4,636         | HDD                | Moderate                             | 28,850 m <sup>2</sup> (forest)                                               | Low                                                                               | 1                                                                                                                          | 100 m of rail bed<br>is within 50 m                                                              | 3 (POD)                                                                                     | N/A                                                                                                                                        |                                              |                                                | Clearing Restriction<br>May 1 to July 31<br>(nesting birds) | Moderate                                          |
| Shallow Angle                  | 457           | HDD                | High                                 | 1,500 m <sup>2</sup> (forest)                                                | Low                                                                               | 0                                                                                                                          | 0                                                                                                | 0                                                                                           | N/A                                                                                                                                        |                                              |                                                | Clearing Restriction<br>May 1 to July 31<br>(nesting birds) | Low                                               |
| Large Angle                    | 678           | HDD                | High                                 | 4,200 m <sup>2</sup><br>(A)(forest)<br>4,900 m <sup>2</sup><br>(B)(forest)   | Low: only a small<br>area with potential<br>wildlife habitat is<br>affected.      | 0                                                                                                                          | 0                                                                                                | 0                                                                                           | Construction phase<br>noise disturbance on<br>recreational area;<br>temporary access<br>change to trail use                                | 154 m                                        | 134 m                                          | Clearing Restriction<br>May 1 to July 31<br>(nesting birds) | Low                                               |
| Shoreacres North               | 3,886         | HDD                | High                                 | 11,200 m <sup>2</sup> (forest)                                               | Moderate                                                                          | 0                                                                                                                          | 750 m of rail bed<br>is within 50 m                                                              | 5 (wells)<br>+ 1 POD                                                                        | N/A                                                                                                                                        |                                              |                                                | Clearing Restriction<br>May 1 to July 31<br>(nesting birds) | Moderate                                          |

NOTE: HIGHLIGHTED ROUTE OPTIONS ARE UNDER CONSIDERATION as of July 15<sup>th</sup>, 2009. All other non-highlighted options have been dropped from further consideration due to unsuitable HDD conditions.

\* Assumed ROW width of 18.3 m and Temporary Worskspace (TWS) of 10 m.

# 6.0 REFERENCES

- BC Water Licence Web Query available online at: <u>http://a100.gov.bc.ca/pub/wtrwhse/water\_licences.input</u>. Accessed June 22, 2009.
- BC Water Resources Atlas available online at: <u>http://www.env.gov.bc.ca/wsd/data\_searches/wrbc/index.html</u>. Accessed June 22, 2009.
- Beardmore, Roger. The Columbia Basin: Endangered Spaces and Species. Available on line at:http://www.livinglandscapes.bc.ca/cbasin/endangered/fish-index.htm. Accessed June 22, 2009.

City of Nelson. 2008. Official Community Plan: Land Use Designation Map.

- Egan, Brian; Susan Fergusson; David Izard. Undated. The Ecology of the Interior Cedar-Hemlock Zone. BC Ministry of Forests, Victoria, BC. Available online at: <u>http://www.for.gov.bc.ca/hfd/pubs/docs/Bro/bro48.pdf</u>. Accessed June 23, 2009.
- Eaglevision Geomatics & Archaeology Ltd. 2008. Letter of Notice–Preliminary Field Reconnaissance to Norman Deverney and Terasen Gas. Letter report of December 4, 2008.
- Ernst, T. 2008. Backroads Mapbook: Kootenay Rockies BC. Mussio Ventures Ltd.
- Fisheries Information Summary System (FISS) database available online at: <u>http://www.elp.gov.bc.ca/fish/fiss/index.html</u>. Accessed June 1, 2009.
- Ketcheson, M.V., T.F. Braumandl, D. Meidinger, G. Utzig, D.A. Demarchi, and B.M. Wikeem. February 1991. Chapter 11: Interior Cedar–Hemlock Zone from Ecosystems of British Columbia. BC Ministry of Forests, Victoria, BC available on line at: <u>http://www.for.gov.bc.ca/HRE/becweb/Downloads/Downloads\_SubzoneReports/ICH.pdf</u>. Accessed June 23, 2009.
- Touchstones Nelson: Museum of Art and History. 2007. Balance of Power: Hydroelectric Development in Southeastern British Columbia. Available online at: <u>http://www.virtualmuseum.ca/Exhibitions/Hydro/en/intro/</u>. Accessed June 22, 2009.
- Valentine, K.W.G., P. N. Sprout, T.E. Baker, and L.M. Lavkulich. 1978. Soils Landscapes of British Columbia. Government of BC, Victoria, BC.
- White Sturgeon Recovery Initiative available online at: <u>http://www.uppercolumbiasturgeon.org/</u>. Accessed June 22, 2009.

#### **Personal Communication**

Mattix, Ramona. Manager of Development Services. Regional District of Central Kootenay. July, 2009

Wahn, D. Senior Planner, City of Nelson. July, 2009.

# **APPENDIX A**

Annotated Photographs of the Shoreacres Project Area



Photo 1. Tracks and ballast on northeast side of Blewett Road crossing.



Photo 2. Close up of ballast at the above location.



Photo 3. Looking southwest from the Blewett Road RR crossing at tracks and ballast.



Photo 4. Close up of ballast at the above location.



Photo 5. Looking southwest between Blewett Road and the RR tracks at TP Option route.



Photo 6. Unidentified creek down slope of TP route and up slope of FortisBC power line. Wetted width = ~1.5 m


Photo 7. Another view of the above creek.



Photo 8. Slocan spur line diverging from the Nelson-Castlegar rail line at South Slocan.



Photo 9. Close up of the above junction. Note rusty ballast.



Photo 10. FortisBC Playmor Substation on Sentinel Road, just east of Hwy 3A.



Photo 11. Above substation and power line looking northeast. Will the TP Option follow the power line?



Photo 12. Signs to east of power line indicating access to industrial sites.



Photo 13. Looking north from Sentinel Road under the power line to Gold Island Forest Products operation.



Photo 14. Looking south-southeast from Sentinel Road along power line.



Photo 15. Approximate location where TP Option will cross rail line, just north of Shoreacres Road.



Photo 16. Close up of ballast at above location.



Photo 17. Looking east from the north end of Davidson Road at the location of the Kootenay River crossing option known as Shoreacres North.



Photo 18. Signs at Kootenay River Farm, 2712 Davidson Road, Shoreacres indicating an organic farm. The farm gate is about 150 m south of the north end of Davidson Road.



Photo 19. Existing gas pipeline crossing of the Slocan River, near the river mouth.



Photo 20. Existing gas pipeline aerial crossing of the Kootenay River, just downstream of the confluence with the Slocan River.



Photo 21. Looking northeast from the north bank of the Slocan River at the approximate location of the Large Angle Option for the Kootenay River crossing.



Photo 22. Rising water levels on the west bank of the Kootenay River just upstream of the mouth of the Slocan River.



Photo 23. Looking upstream from the mouth of the Slocan River toward the railway and highway bridges. Water level is fairly high.



Photo 24. Sign at north end of Glade indicating reclamation of land by Columbia Power Corporation (CPC).



Photo 25. Looking north from the north end of Glade, from property signed as belonging to CPC, towards existing tower for aerial crossing. The tower is located south of the Slocan River and west of the Kootenay River. This would be the approximate location of the crossing for the South Shoreacres Option.



Photo 26. Zoomed version of the above photo.



Photo 27. Looking north from the Ward's Ferry Trail at north end of Glade. This is also in the area where the South Shoreacres Option crossing could terminate.



Photo 28. Zoomed version of the above photo.



Photo 29. Looking south from the Glade Ferry. The Lazaroff Option crossing is probably at the narrowing of the river.



Photo 30. Another version of the above photo.

## **APPENDIX B**

Species at Risk in the Shoreacres Regional Study Area

| Class           |                                |                                     | BC     | Identified   |                |      |
|-----------------|--------------------------------|-------------------------------------|--------|--------------|----------------|------|
| (English)       | Scientific Name                | English Name                        | Status | Wildlife     | COSEWIC        | SARA |
|                 |                                | White Sturgeon (Columbia River      |        |              |                |      |
|                 | Acipenser transmontanus pop. 2 | population)                         | Red    |              | E (Nov 2003)   | 1    |
|                 | Acrocheilus alutaceus          | Chiselmouth                         | Blue   |              | NAR (May 2003) |      |
|                 | Catostomus platyrhynchus       | Mountain Sucker                     | Blue   |              | NAR (May 1991) |      |
|                 | Cottus bairdii                 | Mottled Sculpin                     | Blue   |              |                |      |
|                 | Cottus confusus                | Shorthead Sculpin                   | Blue   |              | T (May 2001)   | 1    |
| Ray-finned fish | Cottus hubbsi                  | Columbia Sculpin                    | Blue   |              | SC (May 2000)  | 1    |
|                 | Oncorhynchus clarkii clarkii   | Cutthroat Trout, clarkii subspecies | Blue   |              |                |      |
|                 | Oncorhynchus clarkii lewisi    | Cutthroat Trout, lewisi subspecies  | Blue   | Y (Jun 2006) | SC (Nov 2006)  |      |
|                 | Rhinichthys osculus            | Speckled Dace                       | Red    |              | E (Apr 2006)   | 1    |
|                 | Rhinichthys umatilla           | Umatilla Dace                       | Red    |              | SC (May 1988)  | 3    |
|                 | Salvelinus confluentus         | Bull Trout                          | Blue   | Y (Jun 2006) |                |      |
|                 | Salvelinus malma               | Dolly Varden                        | Blue   |              |                |      |

|                                                        |                                   |                                    | BC     | Identified   |                | SARA     |
|--------------------------------------------------------|-----------------------------------|------------------------------------|--------|--------------|----------------|----------|
| Class                                                  | Scientific Name                   | English Name                       | Status | Wildlife     | COSEWIC        | Schedule |
| Amphihiana                                             | Ambystoma tigrinum                | Tiger Salamander                   | Red    | Y (May 2004) | E (Nov 2001)   | 1        |
| Class<br>Amphibians<br>Birds<br>Bivalves<br>Gastropods | Spea intermontana                 | Great Basin Spadefoot              | Blue   | Y (May 2004) | T (Apr 2007)   | 1        |
| Class<br>Amphibians<br>Birds<br>Bivalves<br>Gastropods |                                   | Great Blue heron, herodias         |        |              |                |          |
| Class<br>Amphibians<br>Birds<br>Birds<br>Bivalves      | Ardea herodias herodias           | subspecies                         | Blue   | Y (Jun 2006) |                |          |
|                                                        | Asio flammeus                     | Short-eared Owl                    | Blue   | Y (May 2004) | SC (Mar 2008)  | 3        |
|                                                        | Botaurus lentiginosus             | American Bittern                   | Blue   |              |                |          |
|                                                        | Buteo lagopus                     | Rough-legged Hawk                  | Blue   |              | NAR (May 1995) |          |
|                                                        | Catherpes mexicanus               | Canyon Wren                        | Blue   |              | NAR (May 1992) |          |
|                                                        | Contopus cooperi                  | Olive-sided Flycatcher             | Blue   |              | T (Nov 2007)   |          |
|                                                        | Dolichonyx oryzivorus             | Bobolink                           | Blue   |              |                |          |
|                                                        | Euphagus carolinus                | Rusty Blackbird                    | Blue   |              | SC (Apr 2006)  | 1        |
|                                                        | Falco mexicanus                   | Prairie Falcon                     | Red    | Y (Jun 2006) | NAR (May 1996) |          |
|                                                        | Hirundo rustica                   | Barn Swallow                       | Blue   |              |                |          |
| Birds                                                  | Icteria virens                    | Yellow-breasted Chat               | Red    | Y (May 2004) | E (Nov 2000)   | 1        |
| Amphibians<br>Birds<br>Bivalves<br>Gastropods          |                                   | Western Screech-Owl, macfarlanei   |        |              |                |          |
|                                                        | Megascops kennicottii macfarlanei | subspecies                         | Red    | Y (May 2004) | E (May 2002)   | 1        |
|                                                        | Melanerpes lewis                  | Lewis's Woodpecker                 | Red    | Y (May 2004) | SC (Nov 2001)  | 1        |
|                                                        | Melanitta perspicillata           | Surf Scoter                        | Blue   |              |                |          |
|                                                        | Otus flammeolus                   | Flammulated Owl                    | Blue   | Y (May 2004) | SC (Nov 2001)  | 1        |
|                                                        | Picoides albolarvatus             | White-headed Woodpecker            | Red    | Y (May 2004) | E (Nov 2000)   | 1        |
|                                                        | Progne subis                      | Purple Martin                      | Blue   |              |                |          |
|                                                        |                                   | Williamson's Sapsucker, thyroideus |        |              |                |          |
|                                                        | Sphyrapicus thyroideus thyroideus | subspecies                         | Red    | Y (Jun 2006) | E (May 2005)   | 1        |
|                                                        | Tympanuchus phasianellus          | Sharp-tailed Grouse, columbianus   |        |              |                |          |
|                                                        | columbianus                       | subspecies                         | Blue   | Y (Jun 2006) |                |          |
| Bivalves                                               | Gonidea angulata                  | Rocky Mountain Ridged Mussel       | Red    |              | SC (Nov 2003)  | 1        |
|                                                        | Anguispira kochi                  | Banded Tigersnail                  | Blue   |              |                |          |
|                                                        | Cryptomastix mullani              | Coeur d'Alene Oregonian            | Blue   |              |                |          |
|                                                        | Fisherola nuttalli                | Shortface Lanx                     | Red    |              |                |          |
|                                                        | Fluminicola fuscus                | Ashy Pebblesnail                   | Red    |              |                |          |
|                                                        | Fossaria truncatula               | Attenuate Fossaria                 | Blue   |              |                |          |
|                                                        | Hemphillia camelus                | Pale Jumping-slug                  | Blue   |              |                |          |
| Birds<br>Bivalves<br>Gastropods                        | Kootenaia burkei                  | Pygmy Slug                         | Red    |              |                |          |
| Casilopous                                             | Magnipelta mycophaga              | Magnum Mantleslug                  | Blue   |              |                |          |

|                                                                                                |                               |                                                 | BC     | Identified   |               | SARA     |
|------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------|--------|--------------|---------------|----------|
| Class                                                                                          | Scientific Name               | English Name                                    | Status | Wildlife     | COSEWIC       | Schedule |
|                                                                                                | Oreohelix strigosa            | Rocky Mountainsnail                             | Blue   |              |               |          |
|                                                                                                | Oreohelix subrudis            | Subalpine Mountainsnail                         | Blue   |              |               |          |
|                                                                                                | Physella columbiana           | Rotund Physa                                    | Red    |              |               |          |
|                                                                                                | Stagnicola apicina            | Abbreviate Pondsnail                            | Blue   |              |               |          |
|                                                                                                | Vallonia cyclophorella        | Silky Vallonia                                  | Blue   |              |               |          |
|                                                                                                | Zonitoides nitidus            | Black Gloss                                     | Blue   |              |               |          |
|                                                                                                | Argia emma                    | Emma's Dancer                                   | Blue   |              |               |          |
|                                                                                                | Argia vivida                  | Vivid Dancer                                    | Red    |              |               |          |
|                                                                                                | Callophrys affinis            | Immaculate Green Hairstreak                     | Blue   |              |               |          |
|                                                                                                | Calopteryx aequabilis         | River Jewelwing                                 | Red    |              |               |          |
|                                                                                                | Cicindela decemnotata         | Badlands Tiger Beetle                           | Red    |              |               |          |
|                                                                                                | Cicindela pugetana            | Sagebrush Tiger Beetle                          | Blue   |              |               |          |
|                                                                                                | Danaus plexippus              | Monarch                                         | Blue   |              | SC (Nov 2001) |          |
| Class S<br>Class S<br>Class S<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C |                               | Silver-spotted Skipper, clarus                  |        |              |               |          |
|                                                                                                | Epargyreus clarus clarus      | subspecies                                      | Blue   |              |               |          |
|                                                                                                | Gomphus graslinellus          | slinellus Pronghorn Clubtail                    |        |              |               |          |
|                                                                                                | Libellula pulchella           | Twelve-spotted Skimmer                          |        |              |               |          |
|                                                                                                | Limenitis archippus           | Viceroy                                         | Red    |              |               |          |
|                                                                                                | Lycaena nivalis               | Lilac-bordered Copper                           | Blue   |              |               |          |
|                                                                                                | Macromia magnifica            | Western River Cruiser                           | Blue   |              |               |          |
|                                                                                                | Pholisora catullus            | Common Sootywing                                | Blue   |              |               |          |
|                                                                                                | Pyrgus communis               | Checkered Skipper                               | Blue   |              |               |          |
|                                                                                                | Satyrium californica          | California Hairstreak                           | Blue   |              |               |          |
|                                                                                                | Speyeria mormonia erinna      | Mormon Fritillary, erinna subspecies            | Red    |              |               |          |
|                                                                                                | Speyeria zerene garretti      | Zerene Fritillary, garretti subspecies          | Blue   |              |               |          |
|                                                                                                | Stylurus olivaceus            | Olive Clubtail                                  | Red    |              |               |          |
|                                                                                                | Corynorhinus townsendii       | Townsend's Big-eared Bat                        | G4     | S3           |               | Blue     |
|                                                                                                | Gulo gulo luscus              | Wolverine, <i>luscus</i> subspecies             | Blue   | Y (May 2004) | SC (May 2003) |          |
|                                                                                                | Martes pennanti               | Fisher                                          | Blue   | Y (Jun 2006) |               |          |
|                                                                                                | Myotis thysanodes             | Fringed Myotis                                  | Blue   | Y (May 2004) | DD (May 2004) | 3        |
| Mammals                                                                                        | Neotamias ruficaudus simulans | Red-tailed Chipmunk, <i>simulans</i> subspecies | Blue   |              |               |          |
| 1                                                                                              |                               | 1                                               |        |              |               |          |

|          |                                 |                                                                       | BC     | Identified   |               | SARA     |
|----------|---------------------------------|-----------------------------------------------------------------------|--------|--------------|---------------|----------|
| Class    | Scientific Name                 | English Name                                                          | Status | Wildlife     | COSEWIC       | Schedule |
|          | Ovis canadensis                 | Bighorn Sheep                                                         | Blue   | Y (Jun 2006) |               |          |
|          | Perognathus parvus              | Great Basin Pocket Mouse                                              | Red    |              |               |          |
|          | Rangifer tarandus pop. 1        | Caribou (southern population)                                         | Red    | Y (May 2004) | T (May 2000)  | 1        |
|          | Taxidea taxus                   | Badger                                                                | Red    | Y (May 2004) | E (May 2000)  | 1        |
|          | Ursus arctos                    | Grizzly Bear                                                          | Blue   | Y (May 2004) | SC (May 2002) |          |
|          | Coluber constrictor             | Racer                                                                 | Blue   | Y (Jun 2006) | SC (Nov 2004) | 1        |
|          | Crotalus oreganus               | Western Rattlesnake                                                   | Blue   | Y (Jun 2006) | T (May 2004)  | 1        |
| Reptiles | Eumeces skiltonianus            | Western Skink                                                         | Blue   |              | SC (May 2002) | 1        |
|          | Pituophis catenifer deserticola | Gopher Snake, deserticola subspecies                                  | Blue   | Y (May 2004) | T (May 2002)  | 1        |
| Turtles  | Chrysemys picta pop. 2          | Western Painted Turtle - Intermountain<br>- Rocky Mountain Population | Blue   |              | SC (Apr 2006) |          |

|          |                                  |                            |           | Identified |                | SARA     |
|----------|----------------------------------|----------------------------|-----------|------------|----------------|----------|
| Class    | Scientific Name                  | English Name               | BC Status | Wildlife   | COSEWIC        | Schedule |
| Conifers | Pinus albicaulis                 | whitebark pine             | Blue      |            |                |          |
|          | Agastache urticifolia            | nettle-leaved giant-hyssop | Blue      |            |                |          |
|          | Agoseris lackschewitzii          | pink agoseris              | Blue      |            |                |          |
|          | Apocynum x floribundum           | western dogbane            | Blue      |            |                |          |
|          | Arabis holboellii var. pinetorum | Holboell's rockcress       | Blue      |            |                |          |
|          | Astragalus microcystis           | least bladdery milk-vetch  | Red       |            |                |          |
|          | Astragalus vexilliflexus var.    |                            |           |            |                |          |
|          | vexilliflexus                    | bent-flowered milk-vetch   | Blue      |            |                |          |
|          | Bidens vulgata                   | tall beggarticks           | Red       |            |                |          |
|          | Brickellia grandiflora           | large-flowered brickellia  | Red       |            | NAR (May 1996) |          |
|          | Brickellia oblongifolia ssp.     |                            |           |            |                |          |
|          | oblongifolia                     | narrow-leaved brickellia   | Blue      |            |                |          |
|          | Castilleja tenuis                | hairy owl-clover           | Red       |            |                |          |
|          | Chenopodium atrovirens           | dark lamb's-quarters       | Red       |            |                |          |
|          | Clarkia rhomboidea               | common clarkia             | Red       |            |                |          |
|          | Coreopsis tinctoria var.         |                            |           |            |                |          |
|          | atkinsoniana                     | Atkinson's coreopsis       | Red       |            |                |          |
|          | Cryptantha ambigua               | obscure cryptantha         | Blue      |            |                |          |
|          | Delphinium sutherlandii          | Sutherland's larkspur      | Blue      |            |                |          |
|          | Dicentra uniflora                | steer's head               | Blue      |            |                |          |
|          | Epilobium glaberrimum ssp.       |                            |           |            |                |          |
|          | fastigiatum                      | smooth willowherb          | Blue      |            |                |          |
|          | Epilobium leptocarpum            | small-fruited willowherb   | Blue      |            |                |          |
|          | Ericameria bloomeri              | rabbitbrush goldenweed     | Red       |            | DD (May 1997)  |          |
|          | Erysimum asperum                 | prairie rocket             | Red       |            |                |          |
|          | Floerkea proserpinacoides        | false-mermaid              | Blue      |            | NAR (May 1984) |          |
|          | Gayophytum ramosissimum          | hairstem groundsmoke       | Red       |            |                |          |
|          | Gentiana affinis                 | prairie gentian            | Blue      |            |                |          |
|          | Gilia tenerrima                  | slender gilia              | Red       |            |                |          |
|          | Glycyrrhiza lepidota             | wild licorice              | Blue      |            |                |          |
|          | Halimolobos whitedii             | Whited's halimolobos       | Blue      |            |                |          |
|          | Hesperochiron pumilus            | dwarf hesperochiron        | Red       |            |                |          |
|          | Heterocodon rariflorum           | heterocodon                | Blue      |            |                |          |

|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |           | Identified |         | SARA     |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|------------|---------|----------|
| Class                                                                                                                                   | Scientific Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | English Name                 | BC Status | Wildlife   | COSEWIC | Schedule |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |           |            |         |          |
| Class So<br>Hy<br>Id<br>Dicots Le<br>Le<br>Li<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M | Hypericum scouleri ssp. nortoniae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | western St. John's-wort      | Blue      |            |         |          |
|                                                                                                                                         | Idahoa scapigera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | scalepod                     | Red       |            |         |          |
|                                                                                                                                         | Impatiens ecalcarata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | spurless touch-me-not        | Blue      |            |         |          |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |           |            |         |          |
|                                                                                                                                         | Lappula occidentalis var. cupulata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | western stickseed            | Red       |            |         |          |
| Dicote                                                                                                                                  | Lepidium densiflorum var.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |           |            |         |          |
| Dicots                                                                                                                                  | pubicarpum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | prairie pepper-grass         | Red       |            |         |          |
|                                                                                                                                         | Lewisia triphylla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | three-leaved lewisia         | Blue      |            |         |          |
| Class S<br>L<br>Dicots<br>Dicots<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                       | Linanthus septentrionalis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | northern linanthus           | Blue      |            |         |          |
|                                                                                                                                         | Megalodonta beckii var. beckii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | water marigold               | Blue      |            |         |          |
|                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |           |            |         |          |
|                                                                                                                                         | Mertensia paniculata var. borealis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tall bluebells               | Blue      |            |         |          |
|                                                                                                                                         | Mimulus breviflorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | short-flowered monkey-flower | Red       |            |         |          |
|                                                                                                                                         | Mimulus breweri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Brewer's monkey-flower       | Blue      |            |         |          |
|                                                                                                                                         | Mimulus suksdorfii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Suksdorf's monkeyflower      | Red       |            |         |          |
|                                                                                                                                         | Polemonium occidentale ssp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |           |            |         |          |
|                                                                                                                                         | occidentale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | western Jacob's-ladder       | Blue      |            |         |          |
|                                                                                                                                         | Polygonum polygaloides ssp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |           |            |         |          |
|                                                                                                                                         | kelloggii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kellogg's knotweed           | Blue      |            |         |          |
|                                                                                                                                         | Potentilla diversifolia var.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |           |            |         |          |
|                                                                                                                                         | perdissecta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | diverse-leaved cinquefoil    | Blue      |            |         |          |
|                                                                                                                                         | Hypericum scouleri ssp. nortoniae   Idahoa scapigera   Impatiens ecalcarata   Lappula occidentalis var. cupulata   Lepidium densiflorum var.   pubicarpum   Lewisia triphylla   Linanthus septentrionalis   Megalodonta beckii var. beckii   Mertensia paniculata var. borealis   Mimulus breviflorus   Mimulus breweri   Mimulus suksdorfii   Polemonium occidentale ssp.   occidentale   Polygonum polygaloides ssp.   kelloggii   Potentilla diversifolia var.   perdissecta   Potentilla nivea var. pentaphylla   Pyrola elliptica   Ribes oxyacanthoides ssp.   cognatum   Rubus nivalis   Rumex paucifolius   Salix boothii   Scrophularia lanceolata   Scutellaria angustifolia ssp.   micrantha   Senecio hydrophiloides |                              |           |            |         |          |
|                                                                                                                                         | Potentilla nivea var. pentaphylla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | five-leaved cinquefoil       | Blue      |            |         |          |
|                                                                                                                                         | Pyrola elliptica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | white wintergreen            | Blue      |            |         |          |
|                                                                                                                                         | Ribes oxyacanthoides ssp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |           |            |         |          |
|                                                                                                                                         | cognatum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | northern gooseberry          | Red       |            |         |          |
|                                                                                                                                         | Rubus nivalis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | snow bramble                 | Blue      |            |         |          |
|                                                                                                                                         | Rumex paucifolius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alpine sorrel                | Blue      |            |         |          |
|                                                                                                                                         | Salix boothii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Booth's willow               | Blue      |            |         |          |
|                                                                                                                                         | Scrophularia lanceolata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lance-leaved figwort         | Blue      |            |         |          |
|                                                                                                                                         | Scutellaria angustifolia ssp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |           |            |         |          |
|                                                                                                                                         | micrantha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | small-flowered skullcap      | Blue      |            |         |          |
|                                                                                                                                         | Senecio hydrophiloides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sweet-marsh butterweed       | Red       |            |         |          |

|                                                                                                   |                                      |                             |           | Identified |               | SARA     |
|---------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------|-----------|------------|---------------|----------|
| Class                                                                                             | Scientific Name                      | English Name                | BC Status | Wildlife   | COSEWIC       | Schedule |
|                                                                                                   | Senecio hydrophilus                  | alkali-marsh butterweed     | Red       |            |               |          |
|                                                                                                   | Senecio megacephalus                 | large-headed groundsel      | Blue      |            |               |          |
|                                                                                                   |                                      |                             |           |            |               |          |
| Class S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | Solidago gigantea ssp. serotina      | smooth goldenrod            | Red       |            |               |          |
|                                                                                                   | Sphaeralcea coccinea                 | scarlet globe-mallow        | Red       |            |               |          |
|                                                                                                   | Stellaria obtusa                     | blunt-sepaled starwort      | Blue      |            |               |          |
|                                                                                                   | Symphyotrichum ascendens             | long-leaved aster           | Red       |            |               |          |
|                                                                                                   | Thalictrum dasycarpum                | purple meadowrue            | Blue      |            |               |          |
|                                                                                                   | Trichostema oblongum                 | mountain blue-curls         | Red       |            |               |          |
|                                                                                                   | Trifolium cyathiferum                | cup clover                  | Red       |            |               |          |
|                                                                                                   | Valeriana edulis ssp. edulis         | edible valerian             | Red       |            |               |          |
|                                                                                                   | Viola septentrionalis                | northern violet             | Red       |            |               |          |
| Class S                                                                                           | Dryopteris cristata                  | crested wood fern           | Blue      |            |               |          |
|                                                                                                   | <i>Gymnocarpium jessoense</i> ssp.   |                             |           |            |               |          |
|                                                                                                   | parvulum                             | Nahanni oak fern            | Blue      |            |               |          |
|                                                                                                   | Polystichum lemmonii                 | Lemmon's holly fern         | Red       |            | T (May 2003)  | 1        |
|                                                                                                   | Carex adusta                         | lesser brown sedge          | Red       |            |               |          |
|                                                                                                   |                                      |                             |           |            |               |          |
|                                                                                                   | Carex lenticularis var. lenticularis | lakeshore sedge             | Red       |            |               |          |
|                                                                                                   | Carex pedunculata                    | peduncled sedge             | Blue      |            |               |          |
|                                                                                                   | Carex scoparia                       | pointed broom sedge         | Blue      |            |               |          |
|                                                                                                   |                                      |                             |           |            |               |          |
|                                                                                                   | Carex scopulorum var. bracteosa      | Holm's Rocky Mountain sedge | Blue      |            |               |          |
|                                                                                                   |                                      |                             |           |            |               |          |
| Class                                                                                             | Carex scopulorum var. prionophylla   | saw-leaved sedge            | Red       |            |               |          |
|                                                                                                   | Carex vulpinoidea                    | fox sedge                   | Blue      |            |               |          |
|                                                                                                   | Cyperus squarrosus                   | awned cyperus               | Blue      |            |               |          |
|                                                                                                   | Eleocharis elliptica                 | Slender spike-rush          | Blue      |            |               |          |
|                                                                                                   | Epipactis gigantea                   | giant helleborine           | Blue      |            | SC (May 1998) | 3        |
|                                                                                                   | Hesperostipa spartea                 | porcupinegrass              | Red       |            |               |          |
|                                                                                                   | Juncus confusus                      | Colorado rush               | Red       |            |               |          |
|                                                                                                   | Melica bulbosa var. bulbosa          | oniongrass                  | Red       |            |               |          |
|                                                                                                   | Melica spectabilis                   | purple oniongrass           | Blue      |            |               |          |

|           |                                  |                  |                  | Identified |         | SARA     |
|-----------|----------------------------------|------------------|------------------|------------|---------|----------|
| Class     | Scientific Name                  | English Name     | <b>BC Status</b> | Wildlife   | COSEWIC | Schedule |
|           |                                  |                  |                  |            |         |          |
|           | Olsynium douglasii var. inflatum | satinflower      | Red              |            |         |          |
|           | Scirpus pallidus                 | pale bulrush     | Red              |            |         |          |
|           | Sporobolus compositus var.       |                  |                  |            |         |          |
|           | compositus                       | rough dropseed   | Blue             |            |         |          |
| Quilworts | Isoetes minima                   | midget quillwort | Red              |            |         |          |

| BEC  |                               |                                |           |                                                        |
|------|-------------------------------|--------------------------------|-----------|--------------------------------------------------------|
| Zone | Scientific Name               | English Name                   | BC Status | BGC                                                    |
|      | Alnus incana / Cornus         |                                |           | ICHmc2/FI02;ICHvc/52;ICHvc/FI02;ICHwc/52;ICHwc/FI02;IC |
|      | stolonifera / Athyrium filix- | mountain alder / red-osier     |           | Hwk1/Fl02;ICHwk4/Fl02;SBSdk/Fl02;SBSmk2/Fl02;SBSvk/F   |
|      | femina                        | dogwood / lady fern            | Blue      | 102;SBSwk1/F102                                        |
|      | Alnus incana / Equisetum      | mountain alder / common        |           | BWBSdk1/FI01;CWHwm/FI01;ICHvc/FI01;ICHvk1/FI01;MSx     |
|      | arvense                       | norsetali                      | Biue      | V/FIU1;SBSVK/FIU1                                      |
|      |                               |                                |           | BWBSdk1/Wt05;ICHdk/Wt05;ICHmc1/Wt05;ICHmc2/Wt05;I      |
|      |                               |                                |           | CHMW1/W105;ICHMW3/W105;ICHVK1/W105;ICHWK1/W105;I       |
|      |                               |                                |           | CHWK2/W105;1DF0K1/W105;1DF0K3/W105;1DF0K4/W105;1DF0    |
|      |                               |                                |           | Wf05·MSdm3w/Wf05·SBPSdc/W/f05·SBPSmk/Wf05·SBPSy        |
|      | Carex lasiocarpa /            | slender sedge / common         |           | c/Wf05:SBSdk/Wf05:SBSmc2/Wf05:SBSmk1/Wf05:SBSwk        |
|      | Drepanocladus aduncus         | hook-moss                      | Blue      | 1/Wf05                                                 |
|      |                               |                                | 2.00      |                                                        |
|      | Dulichium arundinaceum        |                                |           | CDFmm/Wm51;CWHmm1/Wm51;CWHxm2/Wm51;ICHwk1              |
|      | Herbaceous Vegetation         | three-way sedge                | Red       | /Wm51                                                  |
|      | Ē                             |                                |           | BGxh2/Wm02;BWBSdk1/Wm02;ESSFmw/Wm02;ICHmw3/            |
|      |                               |                                |           | Wm02;ICHwk4/Wm02;IDFdm2/Wm02;MSdc2/Wm02;MSdm           |
|      |                               |                                |           | 3/Wm02;MSdm3w/Wm02;MSmw2/Wm02;MSxk/Wm02;MSx            |
|      |                               |                                |           | v/Wm02;SBPSdc/Wm02;SBPSmk/Wm02;SBPSxc/Wm02;S           |
|      | Equisetum fluviatile - Carex  | swamp horsetail - beaked       |           | BSdk/Wm02;SBSdw3/Wm02;SBSmk2/Wm02;SBSwk1/Wm            |
|      | utriculata                    | sedge                          | Blue      |                                                        |
|      | Menyanthes trifoliata -       |                                | Dhua      | CDFmm/Wt06;CWHws1/Wt06;ICHwk1/Wt06;IDFdk2/Wt06;        |
|      | Carex laslocarpa              | buckbean - siender sedge       | Biue      | SBSdk/WTU6                                             |
|      | Picea engelmannii x giauca    | by brid white enruge ( block   |           |                                                        |
|      | / RIDES lacustre / Aralla     | accord while spruce / black    | Blue      | ICHmk1/05                                              |
|      | Thulicaulis                   |                                | Diue      |                                                        |
|      | Picea mariana /               |                                |           | ICHmc2/11/ICHmc2/Wh11/ICHmw3/Wh11/ICHvk2/09/ICHvk      |
|      | Menvanthes trifoliata /       | black spruce / buckbean /      |           | 2/Wb11:ICHwk3/11:ICHwk3/Wb11:SBSdw2/12:SBSdw2/Wb       |
|      | Sphagnum spp.                 | peat-mosses                    | Blue      | 11;SBSmc2/16;SBSmc2/Wb11;SBSwk1/16;SBSwk1/Wb11         |
|      |                               |                                | _         |                                                        |
| ICH  | Pinus contorta / Alnus        |                                |           |                                                        |
|      | viridis ssp. sinuata /        | lodgepole pine / Sitka alder / |           |                                                        |
|      | Calamagrostis rubescens       | pinegrass                      | Blue      | ICHmk1/04                                              |

| BEC<br>Zone | Scientific Name                                                                | English Name                                             | BC Status | BGC                                                                                                                                                                                                                                   |
|-------------|--------------------------------------------------------------------------------|----------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Pseudotsuga menziesii /<br>Calamagrostis rubescens -<br>Linnaea borealis       | Douglas-fir / pinegrass -<br>twinflower                  | Blue      | ICHmk1/03;IDFdm1/01;IDFdm2/01                                                                                                                                                                                                         |
|             | Pseudotsuga menziesii /<br>Mahonia nervosa /<br>Cryptogramma<br>acrostichoides | Douglas-fir / dull Oregon-<br>grape / parsley fern       | Red       | ICHdw1/02                                                                                                                                                                                                                             |
|             | Pseudotsuga menziesii /<br>Penstemon fruticosus -<br>Calamagrostis rubescens   | Douglas-fir / shrubby<br>penstemon - pinegrass           | Blue      | ICHmk1/02;IDFmw1/03;MSdm1/02                                                                                                                                                                                                          |
|             | Salix sitchensis / Carex<br>sitchensis                                         | Sitka willow / Sitka sedge                               | Blue      | CWHvm1/Ws06;CWHvm2/Ws06;ICHvk1/Ws06;MSdc1/Ws0<br>6;MSdm1/Ws06;MSmw2/Ws06;SBSvk/Ws06;SBSwk1/Ws0<br>6                                                                                                                                   |
|             | Thuja plicata / Paxistima<br>myrsinites - Lonicera<br>utahensis                | western redcedar / falsebox -<br>Utah honeysuckle        | Blue      | ICHmk1/01                                                                                                                                                                                                                             |
|             | Thuja plicata - Tsuga<br>heterophylla / Equisetum<br>arvense                   | western redcedar - western<br>hemlock / common horsetail | Blue      | ICHmw1/07;ICHmw2/07                                                                                                                                                                                                                   |
|             | Trichophorum cespitosum /<br>Campylium stellatum                               | tufted clubrush / golden star-<br>moss                   | Blue      | BWBSdk1/Wf11;ESSFdc1/Wf11;ESSFdc2/Wf11;ESSFdc3/<br>Wf11;ESSFdv<br>d/Wf11;ESSFdv/Wf11;ESSFwc2/Wf11;ESSFwc3/Wf11;ESS<br>Fwk1/Wf11;ESSFxc/Wf11;ICHmc2/Wf11;ICHmw1/Wf11;IC<br>Hmw3/Wf11;ICHvk1/Wf11;MSdm2/Wf11;SBSdk/Wf11;SBS<br>wk1/Wf11 |
|             | Tsuga heterophylla /<br>Symphoricarpos albus                                   | western hemlock / common snowberry                       | Red       | ICHxw/01                                                                                                                                                                                                                              |

## **APPENDIX C**

Details of Contaminated Site Information for Shoreacres Study Area

| As Of: MA     | AY 31,          | 2009<br>For: 1                | BC Online: Site Registry 09/06/01<br>PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:18:37 | L<br>7 |
|---------------|-----------------|-------------------------------|------------------------------------------------------------------------------------------|--------|
| Folio:        |                 |                               | Page                                                                                     | L      |
| 8 reco<br>and | ords s<br>Longi | elected for !<br>tude 117 deg | 5.0 km from latitude 49 deg, 25 min, 44 sec<br>, 31 min, 22 sec                          |        |
| Site 1        | Id D            | Lastupd                       | Address / City                                                                           |        |
| 000236        | 55              | 17.                           | CRESCENT VALLEY NDB                                                                      |        |
|               |                 |                               | CASTLEGAR                                                                                |        |
| 000265        | 98              | 070CT01                       | RR#1 HIGHWAY 3A                                                                          |        |
|               |                 |                               | SOUTH SLOCAN                                                                             |        |
| 000363        | .5              | 00NOV03                       | 1099 PLAYMOR ROAD                                                                        |        |
|               |                 |                               | SOUTH SLOCAN                                                                             |        |
| 000394        | 16              | 04AUG10                       | HIGHWAY 3A                                                                               |        |
|               |                 |                               | SOUTH SLOCAN                                                                             |        |
| 000460        | )3              | 00APR07                       | PLAYMOUR ROAD                                                                            |        |
|               |                 |                               | SOUTH SLOCAN                                                                             |        |
| 000593        | _3              | 04APR01                       | 1056 PLAYMOR ROAD                                                                        |        |
|               |                 |                               | CRESCENT VALLEY                                                                          |        |
| 00080.        | 76              | 03MAY09                       | PINECREST ROAD                                                                           |        |
|               |                 |                               | CRESCENT VALLEY                                                                          |        |
| 000865        | 56              | 04AUG10                       | CORRA LINN ROAD                                                                          |        |
|               |                 |                               | SOUTH SLOCAN                                                                             |        |

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 1 Detail Report SITE LOCATION Site ID: 2365 Latitude: 49d 26m 50.2s Victoria File: Longitude: 117d 34m 30.2s Regional File: 4018-70/C1100 Region: FEDERAL PACIFIC YUKON REGION Site Address: CRESCENT VALLEY NDB Prov/State: BC City: CASTLEGAR Postal Code: Registered: MAR 14, 2001 Updated: Detail Removed: Notations: 0 Participants: 0 Associated Sites: 0 Documents: 0 Susp. Land Use: 0 Parcel Descriptions: 0 Location Description: \* TOMBSTONE DATA ONLY FOR SITE REGISTRY \* 30KM N OF CASTLEGAR & 3KM W OF CRESCENT VALLEY. LAT/LONG DERIVED BY BC ENVIRONMENT REFERENCING THE TRANSPORTATION CENTERLINE NETWORK (TCN), NAD 83. Record Status: ACTIVE - ASSESSMENT COMPLETE Fee category: NOT APPLICABLE

No activities were reported for this site

End of Detail Report

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 1 Detail Report SITE LOCATION Site ID: 3946 Latitude: 49d 27m 07.5s Longitude: 117d 31m 35.0s Victoria File: Regional File: 26250-20/3496 Region: NELSON, KOOTENAY Site Address: HIGHWAY 3A City: SOUTH SLOCAN Prov/State: BC Postal Code: Registered: JAN 14, 1998 Updated: AUG 10, 2004 Detail Removed: AUG 10, 2004 Notations: 2 Participants: 4 Associated Sites: 1 Documents: 0 Susp. Land Use: 3 Parcel Descriptions: 1 Location Description: E OF HWY 3A ON W KOOTENAY POWER SERVICE RD. LAT/LONG COORDINATES OBTAINED BY BC ENVIRONMENT REFERENCING TRIM DATA (1:20,000). Record Status: INACTIVE - NO FURTHER ACTION Fee category: SMALL SITE, COMPLEX CONTAMINATION NOTATIONS Notation Type: CASE MANAGEMENT ITEM Notation Class: ADMINISTRATIVE Initiated: SEP 10, 2003 Approved: SEP 10, 2003 Ministry Contact: MURDOCH, WENDY R (CRANBROOK) Note: THIS SITE WAS THE ORIGINAL POLE YARD SITE. THE ADJOINING PROPERTY WAS MERGED WITH THIS SITE AND ALL FURTHER INFORMATION ABOUT THE COMBINED AREA IS NOW LOCATED IN FILE 26250-20/2698. Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: MAY 22, 1997 Approved: MAY 22, 1997 Ministry Contact: STOCKERL, ED (NELSON) Note: SITE INVESTIGATION OF WEST KOOTENAY POWER'S SOUTH SLOCAN POLE YARD REVEALED CONTAMINATION IN A BOREHOLE 2.7 METERS WITHIN COMINCO'S PROPERTY BOUNDARY. PAH'S AND PHENOLS EXCEED AQUATIC LIFE STANDARDS IN GROUNDWATER. SITE PARTICIPANTS Participant: COMINCO LTD. (VANCOUVER, B.C.) Role(s): PROPERTY OWNER Start Date: SEP 01, 1947 End Date: Participant: MURDOCH, WENDY R (CRANBROOK) Role(s): ALTERNATE MINISTRY CONTACT

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 2 SITE PARTICIPANTS Start Date: SEP 10, 2003 End Date: \_ \_ \_ \_ \_ \_ Participant: STOCKERL, ED (NELSON) Role(s): MAIN MINISTRY CONTACT Start Date: FEB 11, 1991 End Date: Participant: WEST KOOTENAY POWER LTD. (HEAD OFFICE - TRAIL, B.C.) Role(s): POTENTIALLY AFFECTED PARTY Start Date: MAY 01, 1909 End Date: ASSOCIATED SITES Site id: 2698 Date: MAY 22, 1997 Notes: WEST KOOTENAY POWER & COMINCO SITES ARE IMMEDIATELY ADJACENT TO EACH OTHER. COMINCO LAND OF ISSUE IS A NARROW STRIP UPGRADIENT TO WEST. BOTH PROPERTIES HISTORICALLY INVOLVED POLE TREATMENT (PRESERVATION) ACTIVITIES AND INVOLVE RELATED CONTAMINATION. SUSPECTED LAND USE Description: WASTE OIL, REPROCESSING, RECYCLING OR BULK STORAGE Notes: - - - - - - - - -Description: WOOD TREATMENT (ANTISAPSTAIN OR PRESERVATION) Notes: Description: WOOD TREATMENT CHEMICAL MANUFACTURING, WHOLESALE BULK STORAG Notes: PARCEL DESCRIPTIONS Date Added: MAY 22, 1997 Crown Land PIN#: LTO PID#: 007544294 Crown Land File#: Land Desc: LOT 1 DISTRICT LOTS 303 AND 5163, KOOTENAY DISTRICT PLAN 17486 EXCEPT PART INCLUDED IN PLAN 17870 No activities were reported for this site

End of Detail Report

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Page 1 Folio: Detail Report SITE LOCATION Site ID: 2698 Latitude: 49d 27m 06.5s Victoria File: 26250-20/2698 Longitude: 117d 31m 30.6s Regional File: 26250-20/2698 Region: NELSON, KOOTENAY Site Address: RR#1 HIGHWAY 3A City: SOUTH SLOCAN Prov/State: BC Postal Code: VOG 2G0 Registered: DEC 23, 1997 Updated: OCT 01, 2007 Detail Removed: SEP 28, 2007 Notations: 12 Participants: 12 Associated Sites: 1 Documents: 6 Susp. Land Use: 3 Parcel Descriptions: 1 Location Description: APPROX 240 NE OF HWY 3A ON W KOOTENAY POWER SERVICE RD. LAT/LONG DERIVED BY BCE REFERENCING THE TRANSPORTATION CENTERLINE NETWORK (TCN), NAD 83. Record Status: ACTIVE - UNDER REMEDIATION Fee category: UNRANKED NOTATIONS Notation Type: NOTICE OF INDEPENDENT REMEDIATION INITIATION SUBMITTED Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: SEP 18, 2007 Approved: SEP 18, 2007 Ministry Contact: ROSSER, CRAIG L Notation Roles Notation Participants JACQUES WHITFORD ENVIRONMENT LIMITED (BURNABY, SUBMITTED BY DOMINION STREET) Notation Type: NOTICE OF INDEPENDENT REMEDIATION COMPLETION SUBMITTED (WMA 28(2)) Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS Initiated: APR 20, 2004 Approved: MAR 24, 2004 Ministry Contact: MURDOCH, WENDY R (CRANBROOK) Notation Participants Notation Roles MURDOCH, WENDY R (CRANBROOK) RECEIVED BY ACRES INTERNATIONAL LIMITED (CASTLEGAR) ISSUED BY Note: CLOSURE LETTER FOR INDEPENDENT REMEDIATION AT SOUTH SLOCAN SWITCHYARD (YOUR FILE 26250-20/2698) Notation Type: NOTICE OF INDEPENDENT REMEDIATION INITIATION SUBMITTED (WMA 28(2))Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page NOTATIONS Initiated: FEB 26, 2004 Approved: FEB 26, 2004 Ministry Contact: MURDOCH, WENDY R (CRANBROOK) Notation Participants Notation Roles MURDOCH, WENDY R (CRANBROOK) RECEIVED BY ISSUED BY ACRES INTERNATIONAL LIMITED (CASTLEGAR) Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: MAY 20, 1997 Approved: MAY 20, 1997 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) SUBMITTED BY STOCKERL, ED (NELSON) RECEIVED BY Note: LETTER SUBMITTED IN RESPONSE TO MINISTRY REQUEST FOR UPDATE ON REMEDIAL/ASSESSMENT PROGRESS AT THE SUBJECT SITE. A LETTER REPORT DATED 97-04-25 CONCERNING GROUNDWATER MONITORING RESULTS FOR SAMPLING CONDUCTED NOV/DEC 1995 AT THREE MONITORING WELLS ALSO SUBMITTED. Notation Type: REMEDIATION PLAN REQUESTED Notation Class: ADMINISTRATIVE Initiated: JAN 30, 1997 Approved: JAN 30, 1997 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles STOCKERL, ED (NELSON) REQUESTED BY WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) RECEIVED BY Note: BC ENVIRONMENT REQUESTS A WRITTEN UPDATE SUMMARIZING THE STATUS OF THE REMEDIAL WORKS INCLUDING A REMEDIAL SCHEDULE SUMMARIZING THE REMEDIAL INITIATIVES WHICH WEST KOOTENAY POWER INTENDS TO UNDERTAKE IN 1997 IN EFFORT TO ADDRESS SITE CONTAMINATION Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: JUN 22, 1995 Approved: JUN 22, 1995 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) SUBMITTED BY Note: UPDATED VERSIONS OF THE SITE INVESTIGATION AND REMEDIAL PLAN REPORTS DATED 93-12-10 AND 94-05-26. Notation Type: REMEDIATION PLAN REPORT SUBMITTED

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 3 NOTATIONS Notation Class: ADMINISTRATIVE Initiated: MAY 26, 1994 Approved: MAY 26, 1994 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) SUBMITTED BY STOCKERL, ED (NELSON) RECEIVED BY Note: DRAFT REMEDIAL PLAN TO EXCAVATE AND TREAT APPROXIMATELY 2000 CUBIC METERS OF CONTAMINATED SOIL AND GROUNDWATER ON-SITE. Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: DEC 10, 1993 Approved: DEC 10, 1993 Ministry Contact: STOCKERL, ED (NELSON) Notation Roles SUBMITTED BY Notation Participants WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) STOCKERL, ED (NELSON) RECEIVED BY Note: LEVEL I AND II ENVIRONMENTAL SITE ASSESSMENT TO DETERMINE CONTAMINATION FROM HISTORIC ACTIVITIES. SOIL AND GROUNDWATER CONTAMINATION WAS FOUND IN EXCESS OF LEVEL 'C' AND SPECIAL WASTE STANDARDS. IT WAS DETERMINED THAT ADDITIONAL INVESTIGATION WOULD BE NECESSARY TO FULLY CHARACTERIZE EXTENT OF CONTAMINATION. Required Actions: BC ENVIRONMENT REVIEW OF REPORT 93-12-21 CONCURRED WITH CONSULTANTS RECOMMENDATION THAT FURTHER INVESTIGATION WAS REQUIRED TO ALLOW DEVELOPMENT OF A REMEDIAL PLAN. Notation Type: CONCENTRATION CRITERIA APPROACH USED Notation Class: ADMINISTRATIVE Initiated: DEC 10, 1993 Approved: DEC 10, 1993 Ministry Contact: STOCKERL, ED (NELSON) Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: AUG 16, 1993 Approved: AUG 16, 1993 Ministry Contact: STOCKERL, ED (NELSON) Notation Roles SUBMITTED BY Notation Participants WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) STOCKERL, ED (NELSON) REVIEWED BY

Note: WEST KOOTENAY POWER SUBMITTED A PROPOSAL FROM SEACOR ENVIRONMENTAL ENGINEERING TO CONDUCT AN ENVIRONMENTAL ASSESSMENT OF THE SITE FOR BC ENVIRONMENT REVIEW. INVESTIGATION WILL INCLUDE CONTAMINATION ASSOCIATED WITH
As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page NOTATIONS HISTORICAL ACTIVITIES AS A UTILITY POLE TREATMENT STATION. BC ENVIRONMENT GENERALLY AGREED WITH THE PROPOSAL AND PROVIDED COMMENTS. - - - - - - -Notation Type: SITE INVESTIGATION REQUESTED Notation Class: ADMINISTRATIVE Initiated: MAY 14, 1991 Approved: MAY 14, 1991 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles STOCKERL, ED (NELSON) REQUESTED BY WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) RECEIVED BY Note: BC ENVIRONMENT RECEIVED ANALYTICAL RESULTS FROM SOIL SAMPLES AT THE OIL STORAGE SITE INDICATING SPECIAL WASTE LEVEL CONTAMINATION. Required Actions: BC ENVIRONMENT REQUESTS FURTHER INVESTIGATIVE WORKS BE DONE TO DELINEATE PENTACHLOROPHENOL CONTAMINATION ON-SITE. Notation Type: SPILL REPORTED Notation Class: ADMINISTRATIVE Initiated: FEB 11, 1991 Approved: FEB 11, 1991 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) SUBMITTED BY STOCKERL, ED (NELSON) RECEIVED BY Note: 25-30 GALLONS OF WASTE OIL SPILLED TO THE GROUND DUE TO A SMALL LEAK IN THE SAMPLE LINE 91-02-09. MINISTRY INSPECTION AFTER INITIAL RESPONSE CONCLUDED ADDITIONAL CLEAN-UP WAS NECESSARY. Required Actions: MINISTRY REQUESTS WEST KOOTENAY POWER REMOVE ALL REMAINING VISIBLE CONTAMINATED SOILS FROM THE SITE AND SUBMIT SOIL SAMPLES TO DOCUMENT LEVELS OF CONTAMINATION REMAINING. SITE PARTICIPANTS Participant: ACRES INTERNATIONAL LIMITED (CASTLEGAR) Role(s): PROPERTY INTEREST HOLDER Start Date: FEB 26, 2004 End Date: - - - -Participant: ANALYTICAL SERVICE LABORATORIES LTD (VANCOUVER) Role(s): ANALYTICAL LAB Start Date: FEB 12, 1991 End Date: Participant: COMINCO METALS (TRAIL) Role(s): FORMER OPERATOR FORMER PROPERTY OWNER POTENTIALLY AFFECTED PARTY

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 5 SITE PARTICIPANTS Start Date: SEP 01, 1947 End Date: Notes: HISTORICAL START DATE; CURRENT PROPERTY OWNER OF THE LAND IMMEDIATELY ADJACENT TO THE WKP PROPERTY. Participant: FORTISBC INC. Role(s): PROPERTY OWNER Start Date: SEP 18, 2007 End Date: Participant: HARROP RECYCLING Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: NOV 21, 1991 End Date: Notes: ASSOCIATED WITH STORAGE TANK REMOVAL Participant: JACQUES WHITFORD ENVIRONMENT LIMITED (BURNABY, DOMINION STREET) Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: SEP 18, 2007 End Date: - - - -Participant: MURDOCH, WENDY R (CRANBROOK) Role(s): ALTERNATE MINISTRY CONTACT Start Date: FEB 26, 2004 End Date: Participant: ROSSER, CRAIG L Role(s): ALTERNATE MINISTRY CONTACT Start Date: SEP 18, 2007 End Date: Participant: SEACOR ENVIRONMENTAL ENGINEERING INC (VANCOUVER (WEST 6TH AVENUE)) Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: SEP 17, 1993 End Date: Notes: CONTACT: ROB CHAISSON Participant: STOCKERL, ED (NELSON) Role(s): MAIN MINISTRY CONTACT End Date: Start Date: FEB 11, 1991 Participant: WEST KOOTENAY POWER LTD. (HEAD OFFICE - TRAIL, B.C.) Role(s): PROPERTY OWNER Start Date: JAN 04, 1990 End Date: Participant: WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) Role(s): OPERATOR Start Date: MAY 01, 1909 End Date: Notes: HISTORICAL START DATE; CONTACT: PETER COTTER DOCUMENTS Title: CLOSURE LETTER FOR INDEPENDENT REMEDIATION AT SOUTH SLOCAN SWITCHYARD (YOUR FILE 26250-20/2698) Authored: MAR 24, 2004 Submitted: APR 20, 2004 Participants Role

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Page Folio: DOCUMENTS ACRES INTERNATIONAL LIMITED (CASTLEGAR) AUTHOR MURDOCH, WENDY R (CRANBROOK) RECIPIENT Title: GROUNDWATER MONITORING FORMER UTILITY POLE AND STUB TREATMENT AREA BONNINGTON SUB-STATION SOUTH SLOCAN, BC Authored: APR 25, 1997 Submitted: MAY 20, 1997 Role Participants AUTHOR SEACOR ENVIRONMENTAL ENGINEERING INC (VANCOUVER (WEST 6TH AVENUE)) WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) COMMISSIONER STOCKERL, ED (NELSON) RECIPIENT Notes: GROUNDWATER MONITORING FOR 95-11-30 AND 95-12-19. Title: PHASE I AND PHASE II SITE ASSESSMENT FORMER UTILITY POLE AND STUB TREATMENT AREA BONNINGTON SUB-STATION SOUTH SLOCAN, B.C. Authored: JUN 14, 1994 Submitted: JUN 22, 1995 Participants Role AUTHOR SEACOR ENVIRONMENTAL ENGINEERING INC (VANCOUVER (WEST 6TH AVENUE)) WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) COMMISSIONER STOCKERL, ED (NELSON) REVIEWER Notes: DETAILED SITE INVESTIGATION REPORT IS AN UPDATED VERSION OF THE PROGRESS AND INTERPRETIVE REPORTS SUBMITTED 93-12-10. Title: REMEDIAL PLAN FORMER UTILITY POLE AND STUB TREATMENT AREA BONNINGTON SUB-STATION SOUTH SLOCAN, B.C. Submitted: MAY 26, 1994 Authored: APR 29, 1994 Role Participants AUTHOR SEACOR ENVIRONMENTAL ENGINEERING INC (VANCOUVER (WEST 6TH AVENUE)) COMMISSIONER WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) STOCKERL, ED (NELSON) REVIEWER Notes: A DETAILED REMEDIAL PLAN FOR ON-SITE TREATMENT OF CONTAMINATED SOIL IN A BIOCELL. Title: INTERPRETIVE REPORT FORMER UTILITY POLE TREATMENT FACILITY WEST KOOTENAY POWER, SOUTH SLOCAN, B.C. Submitted: DEC 10, 1993 Authored: DEC 06, 1993 Role Participants SEACOR ENVIRONMENTAL ENGINEERING INC (VANCOUVER AUTHOR (WEST 6TH AVENUE)) WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) COMMISSIONER STOCKERL, ED (NELSON) RECIPIENT Notes: REPORT PROVIDES RECOMMENDATIONS FOR FUTURE INVESTIGATION. Title: PROGRESS REPORT LEVEL I AND LEVEL II SITE ASSESSMENT FORMER UTILITY POLE AND STUB TREATMENT AREA BONNINGTON SUB-STATION SOUTH SLOCAN, B.C. Authored: NOV 19, 1993 Submitted: DEC 10, 1993 Participants Role SEACOR ENVIRONMENTAL ENGINEERING INC (VANCOUVER AUTHOR

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 7 DOCUMENTS (WEST 6TH AVENUE)) WEST KOOTENAY POWER LTD. (SOUTH SLOCAN, B.C.) COMMISSIONER STOCKERL, ED (NELSON) RECTPIENT Notes: REPORT DESCRIBES FINDINGS OF PRELIMINARY INVESTIGATION (HISTORY, LOCATION), AS WELL AS RESULTS OF SAMPLE ANALYSIS. ASSOCIATED SITES Site id: 3946 Date: MAY 22, 1997 Notes: WEST KOOTENAY POWER & COMINCO SITES ARE IMMEDIATELY ADJACENT TO EACH OTHER. COMINCO LAND OF ISSUE IS A NARROW STRIP UPGRADIENT TO WEST. BOTH PROPERTIES HISTORICALLY INVOLVED POLE TREATMENT (PRESERVATION) ACTIVITIES AND INVOLVE RELATED CONTAMINATION. SUSPECTED LAND USE Description: WASTE OIL, REPROCESSING, RECYCLING OR BULK STORAGE Notes: THREE LARGE ABOVE GROUND STORAGE TANKS WERE DECOMMISSIONED AND REMOVED PRIOR TO 1993; ONE TANK STORED CREOSOTE, THE OTHER TWO TANKS STORED VARIOUS WASTE PRODUCTS. Description: WOOD TREATMENT (ANTISAPSTAIN OR PRESERVATION) Notes: HISTORIC ACTIVITY Description: WOOD TREATMENT CHEMICAL MANUFACTURING, WHOLESALE BULK STORAG Notes: HISTORIC ACTIVITY PARCEL DESCRIPTIONS Date Added: MAR 08, 1996 Crown Land PIN#: LTO PID#: 011436727 Crown Land File#: Land Desc: LOT A DISTRICT LOT 303 AND 5163 KOOTENAY DISTRICT PLAN 17870 No activities were reported for this site

End of Detail Report

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 1 Detail Report SITE LOCATION Site ID: 3615 Latitude: 49d 26m 47.1s Victoria File: Longitude: 117d 32m 12.4s Regional File: 26250-20/3615 Region: NELSON, KOOTENAY Site Address: 1099 PLAYMOR ROAD City: SOUTH SLOCAN Prov/State: BC Postal Code: V0G 2G0 Registered: DEC 23, 1997 Updated: NOV 03, 2000 Detail Removed: OCT 20, 2000 Notations: 4 Participants: 8 Associated Sites: 1 Documents: 1 Susp. Land Use: 1 Parcel Descriptions: 1 Location Description: LAT/LONG INFORMATION DERIVED BY BC ENVIRONMENT REFERENCING TRIM DATA (1:20,000). Record Status: INACTIVE - NO FURTHER ACTION Fee category: SMALL SITE, SIMPLE CONTAMINATION NOTATIONS Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: JAN 08, 1998 Approved: JAN 08, 1998 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles EBA ENGINEERING CONSULTANTS LTD (NELSON) SUBMITTED BY STOCKERL, ED (NELSON) RECEIVED BY Note: SITE INVESTIGATION OF DIESEL FUEL SPILL AND REMEDIATION ON SOUTH SLOCAN SPORTS ASSOCIATION PROPERTY. Notation Type: CASE MANAGEMENT ITEM Notation Class: ADMINISTRATIVE Initiated: DEC 01, 1997 Approved: DEC 01, 1997 Ministry Contact: STOCKERL, ED (NELSON) B.C.) Note: CONTAMINATED SOILS EXCAVATED FROM SPILL SITE (SOUTH SLOCAN SPORTS ASSOC. PROPERTY) WERE TRANSPORTED TO REGIONAL DISTRICT OF CENTRAL KOOTENAY'S

ROSEBERY LANDFILL FACILITY FOR USE AS INTERIM COVER MATERIAL.

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 2

NOTATIONS

Notation Type: SPILL REPORTED Notation Class: ADMINISTRATIVE Initiated: NOV 12, 1997

Approved: NOV 12, 1997

Ministry Contact: STOCKERL, ED (NELSON)

Notation Participants SCHOOL DISTRICT 8 (KOOTENAY LAKE) (NELSON) PROVINCIAL EMERGENCY PROGRAM STOCKERL, ED (NELSON) Notation Roles SUBMITTED BY RECEIVED BY RECEIVED BY

Note: SCHOOL DISTRICT #8 REPORTED (DGI # 82330) THAT VANDALS HAD DISCHARGED THE CONTENTS OF AN ABOVE GROUND FUEL STORAGE TANK TO THE GROUND AT THE MT. SENTINEL SCHOOL, SOUTH SLOCAN. APPROXIMATELY 2600 LITRES OF DIESEL FUEL SPILLED TO GROUND (GRAVEL/DIRT AREA) ADJACENT TO TENNIS COURTS. THE IMPACTED AREA IS PROPERTY OWNED BY THE SOUTH SLOCAN SPORTS ASSOCIATION.

Required Actions: SCHOOL DISTRICT #8 IS TO EXCAVATE CONTAMINATED SOILS AND TREAT SPECIAL WASTE SOILS IN A BIOCELL FACILITY. CONFIRMATION SAMPLING OF EXCAVATION LIMITS TO BE CONDUCTED TO ENSURE REMEDIATION COMPLETE. SPECIAL WASTE SOILS TO BE MANAGED IN ACCORDANCE WITH SW REGULATION.

Notation Type: SPILL REPORTED Notation Class: ADMINISTRATIVE Initiated: AUG 18, 1993 Approved: SEP 14, 1993

Ministry Contact: JENSEN, JIM

EXCAVATION BACKFILLED WITH CLEAN GRAVEL.

Notation ParticipantsNotation RolesJENSEN, JIMREVIEWED BYSEACOR ENVIRONMENTAL ENGINEERING INC (KAMLOOPS)REQUESTED BY

Note: DURING THE EXCAVATION OF TWO HEATING OIL UNDERGROUND STORAGE TANKS VISUAL AND OLFACTORY OBSERVATIONS OF SOIL AROUND THE FILL PIPE INDICATED THE PRESENCE OF HYDROCARBON. THIS SOIL WAS REMOVED TO A SOIL CELL AND THE

Required Actions: SEACOR REQUESTS BC ENVIRONMENT APPROVAL TO TRANSPORT 92 CUBIC METERS OF HYDROCARBON CONTAMINATED SOIL TO THE OOTISCHENIA LANDFILL NEAR CASTLEGAR. 1993-09-14 - BC ENVIRONMENT ACCEPTS REQUEST THAT CONTAMINATED SOIL IS SUITABLE FOR DISPOSAL AT A LANDFILL.

Participant: EBA ENGINEERING CONSULTANTS LTD (NELSON) Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: DEC 01, 1997 End Date: Participant: JENSEN, JIM Role(s): ALTERNATE MINISTRY CONTACT Start Date: AUG 18, 1993 End Date: MAR 31, 2004

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page SITE PARTICIPANTS Participant: PROVINCIAL EMERGENCY PROGRAM Role(s): ASSOCIATED PROVINCIAL GOVERNMENT CONTACT Start Date: NOV 12, 1997 End Date: \_ \_ \_ \_ Participant: REGIONAL DISTRICT OF CENTRAL KOOTENAY (NELSON, B.C.) Role(s): FILL RECIPIENT LANDFILL OPERATOR/OWNER MUNICIPAL/REGIONAL CONTACT End Date: Start Date: DEC 01, 1997 Participant: SCHOOL DISTRICT 7 (NELSON) Role(s): PROPERTY OWNER Start Date: JAN 04, 1983 End Date: Participant: SCHOOL DISTRICT 8 (KOOTENAY LAKE) (NELSON) Start Date: NOV 12, 1997 End Date: Participant: SEACOR ENVIRONMENTAL ENGINEERING INC (KAMLOOPS) Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: JUL 19, 1993 End Date: Participant: STOCKERL, ED (NELSON) Role(s): MAIN MINISTRY CONTACT Start Date: SEP 16, 1993 End Date: DOCUMENTS Title: SCHOOL DISTRICT NO. 8 SITE ASSESSMENT AND REMEDIATION MOUNT SENTINEL SECONDARY SCHOOL SOUTH SLOCAN, B.C. Authored: DEC 01, 1997 Submitted: JAN 08, 1998 Participants Role EBA ENGINEERING CONSULTANTS LTD (NELSON) AUTHOR COMMISSIONER SCHOOL DISTRICT 8 (KOOTENAY LAKE) (NELSON) STOCKERL, ED (NELSON) RECIPIENT Notes: SITE INVESTIGATION OF DIESEL FUEL SPILL INCLUDING CONTAMINATED SOIL EXCAVATION AND REMOVAL TO LANDFILL, AND CONFIRMATORY SAMPLING. ASSOCIATED SITES Site id: 4603 Date: NOV 25, 1997 Notes: MT. SENTINEL SCHOOL IS RESPONSIBLE FOR REMEDIATION OF THE SPILL FROM ITS ABOVE GROUND DIESEL FUEL STORAGE TANK LOCATED ON SOUTH SLOCAN SPORTS ASSOCIATION PROPERTY. CONTAMINATED SOIL WAS EXCAVATED AND REMOVED. CONFIRMATORY SAMPLING WAS CONDUCTED. SUSPECTED LAND USE Description: EDUCATION / HEALTH FACILITIES Notes: 

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: PARCEL DESCRIPTIONS

Date Added: JAN 07, 1997 LTO PID#: 016067991 Land Desc: PARCEL 1 (SEE 83650I) OF BLOCK A DISTRICT LOT 303 KOOTENAY DISTRICT PLAN 872 No activities were reported for this site

End of Detail Report

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 1 Detail Report SITE LOCATION Site ID: 4603 Latitude: 49d 26m 43.3s Victoria File: Longitude: 117d 32m 17.4s Regional File: 26250-20/4603 Region: NELSON, KOOTENAY Site Address: PLAYMOUR ROAD City: SOUTH SLOCAN Prov/State: BC Postal Code: VOG 2G0 Registered: JAN 15, 1998 Updated: APR 07, 2000 Detail Removed: APR 07, 2000 Notations: 5 Participants: 5 Associated Sites: 1 Documents: 1 Susp. Land Use: 2 Parcel Descriptions: 1 Location Description: RECREATION AREA NEXT TO THE MT. SENTINEL SCHOOL IN SOUTH SLOCAN. LAT/LONG COORDINATES OBTAINED BY BC ENVIRONMENT USING TRIM DATA (1:20,000). Record Status: INACTIVE - NO FURTHER ACTION Fee category: SMALL SITE, COMPLEX CONTAMINATION NOTATIONS Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: JAN 08, 1998 Approved: JAN 08, 1998 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles EBA ENGINEERING CONSULTANTS LTD (NELSON) SUBMITTED BY STOCKERL, ED (NELSON) RECEIVED BY Note: INVESTIGATION OF REMEDIAL EXCAVATION AND RESULTS OF CONFIRMATORY SAMPLING FOR DIESEL FUEL SPILL. Required Actions: REPORT SUBMITTED TO BC ENVIRONMENT FOR INFORMATION PURPOSES ONLY, NOT FOR REVIEW. Notation Type: CASE MANAGEMENT ITEM Notation Class: ADMINISTRATIVE Initiated: DEC 01, 1997 Approved: DEC 01, 1997 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles Notation Participants SCHOOL DISTRICT 8 (KOOTENAY LAKE) (NELSON) REGIONAL DISTRICT OF CENTRAL KOOTENAY (NELSON, REQUESTED BY RECEIVED BY B.C.)

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 2 NOTATIONS Note: CONTAMINATED SOILS EXCAVATED FROM THE SPILL SITE (SOUTH SLOCAN SPORTS ASSOC. PROPERTY) WERE TRANSPORTED TO REGIONAL DISTRICT OF CENTRAL KOOTENAY'S ROSEBERY LANDFILL FACILITY FOR USE AS INTERIM COVER MATERIAL. Notation Type: CASE MANAGEMENT ITEM Notation Class: ADMINISTRATIVE Initiated: NOV 27, 1997 Approved: NOV 27, 1997 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles STOCKERL, ED (NELSON) REVIEWED BY EBA ENGINEERING CONSULTANTS LTD (NELSON) REQUESTED BY SCHOOL DISTRICT 8 (KOOTENAY LAKE) (NELSON) RECEIVED BY REQUESTED BY Note: EBA (CONSULTANT FOR SCHOOL DISTRICT #8) SUBMITTED REQUEST TO REGIONAL DISTRICT OF CENTRAL KOOTENAY (RDCK) TO DISPOSE APPROX. 200 CUBIC METRES OF HYDROCARBON CONTAMINATED SOILS (NON-SPECIAL WASTE) TO RDCK'S PERMITTED LANDFILL AT ROSEBERRY. SOILS HAD BEEN EXCAVATED AT SPILL SITE AS A REMEDIAL ACTION. Notation Type: INSPECTION / VISIT Notation Class: ADMINISTRATIVE Initiated: NOV 12, 1997 Approved: NOV 12, 1997 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles SCHOOL DISTRICT 8 (KOOTENAY LAKE) (NELSON) REQUESTED BY STOCKERL, ED (NELSON) ISSUED BY Note: E. STOCKERL OF NELSON MOE INSPECTED SPILL SITE ON NOV. 12/97 PM AND PROVIDED RECOMMENDATION TO SCHOOL DIST. # 8 REGARDING ENVIRONMENTAL ASSESSMENT AND REMEDIATION OPTIONS. Required Actions: SCHOOL DISTRICT TO RETAIN SERVICES OF CONSULTANT TO ASSESS AND REMEDIATE SITE TO WITHIN RESIDENTIAL LAND USE STANDARDS Notation Type: SPILL REPORTED Notation Class: ADMINISTRATIVE Initiated: NOV 12, 1997 Approved: NOV 12, 1997 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles SCHOOL DISTRICT 8 (KOOTENAY LAKE) (NELSON) SUBMITTED BY STOCKERL, ED (NELSON) RECEIVED BY Note: SCHOOL DISTRICT #8 REPORTED (DGI # 82330) THAT VANDALS HAD DISCHARGED

Note: SCHOOL DISTRICT #8 REPORTED (DGI # 82330) THAT VANDALS HAD DISCHARGED THE CONTENTS OF AN ABOVE GROUND FUEL STORAGE TANK TO THE GROUND AT THE MT. SENTINEL SCHOOL, SOUTH SLOCAN. APPROXIMATELY 2600 LITRES OF DIESEL FUEL

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 3 NOTATIONS SPILLED TO GROUND (GRAVEL/DIRT AREA) ADJACENT TO TENNIS COURTS. THE IMPACTED AREA IS PROPERTY OWNED BY THE SOUTH SLOCAN SPORTS ASSOCIATION. Required Actions: SCHOOL DISTRICT #8 IS TO EXCAVATE CONTAMINATED SOILS AND TREAT SPECIAL WASTE SOILS IN A BIOCELL FACILITY. CONFIRMATION SAMPLING OF EXCAVATION LIMITS TO BE CONDUCTED TO ENSURE REMEDIATION COMPLETE. SPECIAL WASTE SOILS TO BE MANAGED IN ACCORDANCE WITH SW REGULATION. SITE PARTICIPANTS Participant: EBA ENGINEERING CONSULTANTS LTD (NELSON) Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: NOV 27, 1997 End Date: Participant: REGIONAL DISTRICT OF CENTRAL KOOTENAY (NELSON, B.C.) Role(s): FILL RECIPIENT Start Date: DEC 01, 1997 End Date: Notes: CONTAMINATED SOIL DISPOSED AT ROSEBERY LANDFILL. - - - - - -Participant: SCHOOL DISTRICT 8 (KOOTENAY LAKE) (NELSON) Role(s): OPERATOR RESPONSIBLE PERSON Start Date: NOV 12, 1997 End Date: Participant: SOUTH SLOCAN SPORTS ASSOCIATION (SOUTH SLOCAN) Role(s): PROPERTY OWNER Start Date: NOV 12, 1997 End Date: Participant: STOCKERL, ED (NELSON) Role(s): MAIN MINISTRY CONTACT Start Date: NOV 12, 1997 End Date: DOCUMENTS Title: SCHOOL DISTRICT NO.8 SITE ASSESSMENT AND REMEDIATION MOUNT SENTINEL SECONDARY SCHOOL SOUTH SLOCAN, B.C. Authored: DEC 01, 1997 Submitted: JAN 08, 1998 Participants Role EBA ENGINEERING CONSULTANTS LTD (NELSON) AUTHOR SCHOOL DISTRICT 8 (KOOTENAY LAKE) (NELSON) COMMISSIONER STOCKERL, ED (NELSON) RECIPIENT Notes: SITE INVESTIGATION OF DIESEL FUEL SPILL. ASSOCIATED SITES Site id: 3615 Date: NOV 25, 1997 Notes: MT. SENTINEL SCHOOL IS RESPONSIBLE FOR REMEDIATION OF THE SPILL FROM ITS ABOVE GROUND DIESEL FUEL STORAGE TANK LOCATED ON SOUTH SLOCAN SPORTS ASSOCIATION PROPERTY. CONTAMINATED SOIL WAS EXCAVATED AND REMOVED. CONFIRMATORY SAMPLING WAS CONDUCTED. 

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 4 SUSPECTED LAND USE Description: EDUCATION / HEALTH FACILITIES Notes: SPORTS FACILITIES NEXT TO GRADE SCHOOL Description: PERTO. PROD., /PRODUCE WATER STRG ABVEGRND/UNDERGRND TANK Notes: 1 ABOVE GROUND DIESEL FUEL STORAGE TANK PARCEL DESCRIPTIONS Date Added: NOV 25, 1997 Crown Land PIN#: LTO PID#: 016022602 Crown Land File#: Land Desc: THAT PART OF PARCEL 1 (REFERENCE PLAN 13446D) OF BLOCK A DISTRICT LOT 303 KOOTENAY DISTRICT PLAN 872 SHOWN OUTLINED RED ON REFERENCE PLAN 473641, EXCEPT PARCEL 1 (REFERENCE PLAN 83650I) No activities were reported for this site

End of Detail Report

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 1 Detail Report SITE LOCATION Site ID: 5913 Latitude: 49d 26m 37.3s Victoria File: 26250-20/5913 Longitude: 117d 32m 37.9s Regional File: Region: NELSON, KOOTENAY Site Address: 1056 PLAYMOR ROAD City: CRESCENT VALLEY Prov/State: BC Postal Code: Registered: MAY 28, 1999 Updated: APR 01, 2004 Detail Removed: MAR 24, 2004 Notations: 4 Participants: 2 Associated Sites: 1 Documents: 0 Susp. Land Use: 0 Parcel Descriptions: 3 Location Description: SITE CREATED BY SITE PROFILE, ENTERED 1999-05-19. LAT/LONG CONFIRMED USING GOAT BY MINISTRY STAFF Record Status: INACTIVE - NO FURTHER ACTION Fee category: NOT APPLICABLE NOTATIONS Notation Type: SITE PROFILE REVIEWED - NO FURTHER INVESTIGATION REQUIRED BY THE MINISTRY Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: MAY 19, 1999 Approved: Ministry Contact: WARD, JOHN E H Notation Type: SITE PROFILE - NO FURTHER INVESTIGATION REQUIRED BY THE MINISTRY Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS Initiated: MAY 19, 1999 Approved: Ministry Contact: WARD, JOHN E H Notation Type: SITE PROFILE RECEIVED Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: APR 09, 1999 Approved: Ministry Contact: WARD, JOHN E H Notation Participants Notation Roles SELKIRK PAVING LTD (CRESCENT VALLEY) SITE PROFILE SUBMITTED BY SELKIRK PAVING LTD (CRESCENT VALLEY) SITE PROFILE SUBMITTED BY Notation Type: SITE PROFILE RECEIVED Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio Page 2 NOTATIONS Initiated: APR 09, 1999 Approved: Ministry Contact: WARD, JOHN E H Notation Participants Notation Roles SELKIRK PAVING LTD (CRESCENT VALLEY) SITE PROFILE SUBMITTED BY SELKIRK PAVING LTD (CRESCENT VALLEY) SITE PROFILE SUBMITTED BY SITE PARTICIPANTS Participant: SELKIRK PAVING LTD (CRESCENT VALLEY) Role(s): PROPERTY OWNER SITE PROFILE COMPLETOR SITE PROFILE CONTACT Start Date: MAR 10, 1999 End Date: Participant: WARD, JOHN E H Role(s): MAIN MINISTRY CONTACT Start Date: APR 09, 1999 End Date. ASSOCIATED SITES 8072 Site id: Date: NOV 07, 2002 Notes: SITE PROFILE HAD BEEN SUBMITTED FOR ADJACENT PARCEL (SITE 5913). PARCEL DESCRIPTIONS Date Added: MAR 10, 1999 Crown Land PIN#: LTO PID#: 015433412 Crown Land File#: Land Desc: PARCEL A (REFERENCE PLAN 101786I) DISTRICT LOT 303 KOOTENAY DISTRICT EXCEPT PLAN NEP65559 Date Added: NOV 06, 1999 Crown Land PIN#: LTO PID#: 024619621 Crown Land File#: Land Desc: LOT 1 DISTRICT LOT 303 KOOTENAY DISTRICT PLAN NEP65559 Date Added: FEB 26, 2000 Crown Land PIN#: LTO PID#: 024700185 Crown Land File#: Land Desc: LOT 1 DISTRICT LOT 303 KOOTENAY DISTRICT PLAN NEP66204 CURRENT SITE PROFILE INFORMATION (Sec. III to X) Site Profile Completion Date: MAR 10, 1999 Local Authority Received: MAR 29, 1999 Ministry Regional Manager Received: APR 09, 1999 Decision: MAY 19, 1999 Decision: INVESTIGATION NOT REQUIRED Site Registrar Received: APR 09, 1999 Entry Date: MAY 19, 1999

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:04 Folio: Page 3 AREAS OF POTENTIAL CONCERN Petroleum, solvent or other polluting substance spills to the environment greater than 100 litres?.....NO Residue left after removal of piled materials such as chemicals, coal, ore, smelter slag, air quality control system baghouse dust?.....NO Discarded barrels, drums or tanks?.....NO FILL MATERIALS Fill dirt, soil, gravel, sand or like materials from a contaminated site or from a source used for any of the activiities listed under Schedule 2?.....NO Discarded or waste granular materials such as sand blasting grit, asphalt paving or roofing material, spent foundry casting sands, mine ore, waste rock or float?.....NO Dredged sediments, or sediments and debris materials originating from locations adjacent to foreshore industrial activities, or municipal sanitary or stormwater discharges?.....NO WASTE DISPOSAL Materials such as household garbage, mixed municipal refuse, or demolition debris?.....NO Waste or byproducts such as tank bottoms, residues, sludge, or flocculation precipitates from industrial processes or wastewater treatment?.....NO Waste products from smelting or mining activities, such as smelter slag, mine tailings, or cull materials from coal processing?.....NO Waste products from natural gas and oil well drilling activities, such as drilling fluids and muds?.....NO Waste products from photographic developing or finishing laboratories; asphalt tar manufacturing; boilers, incinerators or other thermal facilities (eg. ash); appliance, small equipment or engine repair or salvage; dry cleaning operations (eg. solvents); or automobile and truck parts cleaning or repair?.....NO TANKS OR CONTAINERS USED OR STORED Underground fuel or chemical storage tanks?.....NO Above ground fuel or chemical storage tanks?.....NO SPECIAL (HAZARDOUS) WASTES OR SUBSTANCES PCB-containing electrical transformers or capacitors either at grade, attached above ground to poles, located within buildings, or stored?....NO Waste asbestos or asbestos containing materials such as pipe wrapping, blown-in insulation or panelling buried?.....NO Paints, solvents, mineral spirits or waste pest control products or pest control product containers stored in volumes greater than 205 litres?...NO LEGAL OR REGULATORY ACTIONS OR CONSTRAINTS Government orders or other notifications pertaining to environmental conditions or quality of soil, water, groundwater or other environmental media?.....NO Liens to recover costs, restrictive covenants on land use, or other charges or encumbrances, stemming from contaminants or wastes remaining

X ADDITIONAL COMMENTS AND EXPLANATIONS

End of Detail Report

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:15 Folio: Page 1 Detail Report SITE LOCATION Site ID: 8076 Latitude: 49d 26m 40.3s Longitude: 117d 32m 31.4s Victoria File: Regional File: 26250-20/8076 Region: NELSON, KOOTENAY Site Address: PINECREST ROAD City: CRESCENT VALLEY Prov/State: BC Postal Code: VOG 1H0 Registered: NOV 29, 2002 Updated: MAY 09, 2003 Detail Removed: APR 29, 2003 Notations: 2 Participants: 5 Associated Sites: 0 Documents: 1 Susp. Land Use: 2 Parcel Descriptions: 1 Location Description: LAT/LONG COORDINATES PROVIDED BY PROPERTY OWNER Record Status: INACTIVE - NO FURTHER ACTION Fee category: LARGE SITE, SIMPLE CONTAMINATION NOTATIONS Notation Type: NOTICE OF INDEPENDENT REMEDIATION COMPLETION SUBMITTED (WMA 28(2)) Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS Initiated: APR 03, 2003 Approved: APR 03, 2003 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles WESTERN BIORESOURCES CONSULTING LTD (CASTLEGAR SUBMITTED BY (17TH STREET)) SELKIRK PAVING LTD (CRESCENT VALLEY) REFERRED BY EICHENBERGER, KATHY (KOOTENEY) RECEIVED BY Note: LETTER NOTIFICATION OF REMEDIAL PROGRAM COMPLETION SUBMITTED TO REGIONAL MANAGER. SUBMISSION INCLUDED A COPY OF REMEDIAL CONFIRMATION REPORT DATED MARCH 25/03. Notation Type: NOTICE OF INDEPENDENT REMEDIATION INITIATION SUBMITTED (WMA 28(2))Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS Initiated: OCT 28, 2002 Approved: OCT 28, 2002 Ministry Contact: STOCKERL, ED (NELSON) Notation Participants Notation Roles WESTERN BIORESOURCES CONSULTING LTD (CASTLEGAR SUBMITTED BY (17TH STREET)) STOCKERL, ED (NELSON) REVIEWED BY JOHNSON, CARL RECEIVED BY

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:15 Folio: Page 2 NOTATIONS Note: WRITTEN NOTICE PROVIDED TO MANAGER OUTLINING PROPOSAL TO EXCAVATE SOILS IMPACTED BY HISTORIC DISCHARGES OF WASTE OIL AND DIESEL FUEL. SOILS TO BE TEMPORARILY MANAGED ON-SITE IN LINED CELL UNTIL UTILIZED/DISPOSED AS FEED MATERIAL IN MANUFACTURE OF ASPHALT. Required Actions: AN AMENDED REMEDIAL NOTICE WAS SUBMITTED TO MANAGER ON DEC. 6/02 WITH REVISED VOLUMES OF SOILS TARGETED FOR EXCAVATION, REVISED INTERIM SOIL STORAGE/MANAGEMENT PLAN AND REVISED DATES FOR UTILIZATION OF SOILS IN ASPHALT MANUFACTURE SITE PARTICIPANTS Participant: EICHENBERGER, KATHY(KOOTENEY) Role(s): ALTERNATE MINISTRY CONTACT End Date: Start Date: MAR 25, 2003 Participant: JOHNSON, CARL Role(s): ALTERNATE MINISTRY CONTACT Start Date: OCT 28, 2002 End Date: Notes: ASSISTANT REGIONAL WASTE MANAGER Participant: SELKIRK PAVING LTD (CRESCENT VALLEY) Role(s): OPERATOR PROPERTY OWNER Start Date: OCT 28, 2002 End Date: Participant: STOCKERL, ED (NELSON) Role(s): MAIN MINISTRY CONTACT Start Date: OCT 28, 2002 End Date: Participant: WESTERN BIORESOURCES CONSULTING LTD (CASTLEGAR (17TH STREET)) Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: OCT 28, 2002 End Date: DOCUMENTS Title: CONFIRMATION OF REMEDIATION REPORT FOR WILLIAMSON PIT, CRESCENT VALLEY, BC PID# 019-174-292 Authored: MAR 25, 2003 Submitted: APR 03, 2003 Participants Role WESTERN BIORESOURCES CONSULTING LTD (CASTLEGAR AUTHOR (17TH STREET)) SELKIRK PAVING LTD (CRESCENT VALLEY) COMMISSIONER EICHENBERGER, KATHY (KOOTENEY) RECIPIENT Notes: LETTER REPORT SUMMARIZING REMEDIAL PROGRAM AND RESULTS OF REMEDIAL CONFIRMATION TESTING. DOCUMENT WAS SUBMITTED TO MINISTRY IN SUPPORT OF NOTICE OF 

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:15 Folio: Page 3 SUSPECTED LAND USE Description: ASPHALT TAR MANUFACTURE/WHOLESALE STORAGE/DISTRIBUTE Notes: GRAVEL PIT ASSOCIATED WITH ASPHALT MANUFACTURE Description: MISCELLANEOUS INDUSTRIES, OPERATIONS OR ACTIVITIES Notes: SITE UTILIZED AS GRAVEL PIT, ROCK CRUSHER OPERATION AND HISTORIC ASPHALT MANUFACTURE PARCEL DESCRIPTIONS Date Added: NOV 29, 2002 Crown Land PIN#:

LTO PID#: 019174292 Crown Land File#: Land Desc: LOT 1 DISTRICT LOT 303 KOOTENAY DISTRICT PLAN NEP22029 No activities were reported for this site

End of Detail Report

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:15 Folio: Page 1 Detail Report SITE LOCATION Site ID: 8656 Latitude: 49d 28m 09.6s Victoria File: Longitude: 117d 28m 08.6s Regional File: 26250-20/8656 Region: NELSON, KOOTENAY Site Address: CORRA LINN ROAD City: SOUTH SLOCAN Prov/State: BC Postal Code: VOG 2G0 Registered: NOV 21, 2003 Updated: AUG 10, 2004 Detail Removed: AUG 09, 2004 Notations: 2 Participants: 3 Associated Sites: 0 Documents: 2 Susp. Land Use: 1 Parcel Descriptions: 1 Record Status: INACTIVE - NO FURTHER ACTION Fee category: UNRANKED NOTATIONS Notation Type: NOTICE OF INDEPENDENT REMEDIATION COMPLETION SUBMITTED (WMA 28(2)) Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS Initiated: APR 20, 2004 Approved: MAR 24, 2004 Ministry Contact: MURDOCH, WENDY R (CRANBROOK) Notation Participants Notation Roles MURDOCH, WENDY R (CRANBROOK) RECEIVED BY ACRES INTERNATIONAL LIMITED (CASTLEGAR) ISSUED BY Note: CLOSURE LETTER FOR INDEPENDENT REMEDIATION AT CORRA LINN SWITCHYARD Notation Type: NOTICE OF INDEPENDENT REMEDIATION INITIATION SUBMITTED (WMA 28(2)Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS Initiated: NOV 13, 2003 Approved: NOV 13, 2003 Ministry Contact: MURDOCH, WENDY R (CRANBROOK) Notation Participants Notation Roles AQUILA NETWORKS CANADA (TRAIL) REQUESTED BY MURDOCH, WENDY R (CRANBROOK) RECEIVED BY ACRES INTERNATIONAL LIMITED (CASTLEGAR) ISSUED BY Note: THREE AREAS OF IMPACT WHERE THERE WERE PREVIOUSLY CIRCUIT BREAKERS CONTAINING MINERAL OIL DIELECTRIC FLUID WHICH HAD LEAKED INTO THE SOIL. Required Actions: PROPOSE EXCAVATING IMPACTED SOILS, REMOVING TO OFF-SITE FACILITY FOR TREATMENT AND PERFORMING CONFIRMATORY SAMPLING PRIOR TO BACKFILLING WTH CLEAN SOIL.

As of: MAY 31, 2009 BC Online: Site Registry 09-06-01 For: PB77627 GILLESPIE RENKEMA BARNETT BROADWAY 14:20:15 Folio: Page 2 SITE PARTICIPANTS Participant: ACRES INTERNATIONAL LIMITED (CASTLEGAR) Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: SEP 26, 2003 End Date: Participant: AQUILA NETWORKS CANADA (TRAIL) Role(s): PROPERTY OWNER RESPONSIBLE PERSON Start Date: SEP 26, 2003 End Date: . . . . Participant: MURDOCH, WENDY R (CRANBROOK) Role(s): MAIN MINISTRY CONTACT Start Date: SEP 26, 2003 End Date: DOCUMENTS Title: CLOSURE LETTER FOR INDEPENDENT REMEDIATION AT CORRA LINN SWITCHYARD (YOUR FILE 26250-20/8656) Authored: MAR 24, 2004 Submitted: MAY 20, 2004 Participants Role ACRES INTERNATIONAL LIMITED (CASTLEGAR) AUTHOR MURDOCH, WENDY R (CRANBROOK) RECIPIENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - -Title: NOTIFICATION OF INDEPENDENT REMEDIATION Authored: SEP 26, 2003 Submitted: SEP 26, 2003 Participants Role ACRES INTERNATIONAL LIMITED (CASTLEGAR) AUTHOR AQUILA NETWORKS CANADA (TRAIL) COMMISSIONER MURDOCH, WENDY R (CRANBROOK) RECIPIENT SUSPECTED LAND USE Description: ELECTRICAL TRANSMISSION OR DISTRIBUTION SUBSTATIONS Notes: PARCEL DESCRIPTIONS Date Added: NOV 13, 2003 Crown Land PIN#: LTO PID#: 009393307 Crown Land File#: Land Desc: DISTRICT LOT 14536 KOOTENAY DISTRICT No activities were reported for this site End of Detail Report

Appendix J SHOREACRES AERIAL REPLACEMENT PROJECT PRELIMINARY FIELD RECONNAISSANCE AND FINAL REPORT JULY 16, 2009

# **Shoreacres Aerial Replacement Project**

## Preliminary Field Reconnaissance & Final Report

Wayne Choquette & Eagle Vision Geomatics & Archaeology Ltd. July 16, 2009

Prepared for:

Westland Resources Group Inc.



Conscientious and accountable stewardship of archaeological heritage

### PRELIMINARY FIELD RECONNAISSANCE FINAL REPORT

Wayne T. Choquette P.O. Box 25, Yahk, BC VOB 2P0 wchoquette@cyberlink.bc.ca

#### Eagle Vision Geomatics & Archaeology Ltd.

201-14<sup>th</sup> Ave. N, Cranbrook, BC V1C 3W3

eaglevision@ktunaxa.org

| Project Contacts and Details                                                                                                                                                                                                                                                                             |                                                                                                                                                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Project Name:</b><br><i>PFR of Shoreacres Aerial Replacement Project</i>                                                                                                                                                                                                                              | <b>Project Area:</b><br>Situated along the right and left banks of the<br>Kootenay River at its confluence with the Slocan<br>River.                                      |  |
| Proponent: Westland Resource Group Inc.<br>Contact: Wayne Biggs<br>Telephone: (250) 592-8500<br>Email: biggs@westland.com                                                                                                                                                                                |                                                                                                                                                                           |  |
| Interim Report Authors: Wayne T. Choquette & Nicole Kapell<br>Mapping: Jose Galdamez                                                                                                                                                                                                                     | Contractor: Eagle Vision Geomatics &<br>Archaeology Ltd.<br>Contact: Melissa Knight<br>Telephone: (250) 420-2724<br>Fax: (250) 489-2438<br>Email: eaglevision@ktunaxa.org |  |
| Attachments:<br>Figure 1: Shoreacres Aerial Replacement Overview Ma<br>Figure 2: Shoreacres Aerial Replacement development<br>Figure 3: Shoreacres Aerial Replacement development<br>Photo Plate 1: View northwest of the TP Option Crossin<br>Photo Plate 2: View of soil stratigraphy on the left bank | ap;<br>a map, North;<br>a map, South;<br>ng;<br>of the Kootenay River at the TP Option Crossing.                                                                          |  |

#### Administrative / Legal Context

Archaeological sites that pre-date 1846 are automatically protected under the *Heritage Conservation Act* whether on public or private land. Sites that are of an unknown age that have a likely probability of dating to prior to 1846 (e.g. lithic scatters) as well as Aboriginal pictographs, petroglyphs, and burials (which are likely not as old but are still considered to have historical or archaeological value) are also automatically protected. Under the *HCA*, protected sites may not be damaged, altered or moved in any way without a Section 12 or 14 Permit as issued through the *HCA*. Sites which do not predate 1846 and not necessarily automatically protected under the *HCA* may still represent cultural heritage resources as defined by the *Forest Practices Code Act (FPC)*, specifically Sections 2 and 17, which require that cultural heritage resources such as CMT sites be inventoried and considered in both operational and strategic planning.

#### **Study Objectives and Limitations**

The objectives of this particular Preliminary Field Reconnaissance (PFR) were: (1) to identify and assess archaeological resource potential or sensitivity within identified P/L crossings of the proposed Shoreacres Aerial Replacement Project and (2) to develop recommendations regarding any future archaeological stewardship concerns, including possible mitigative options for identified potential conflicts.

This assessment does not address potential impacts to traditional use sites within or near the study area. This report is provided without prejudice toward Aboriginal Rights and Title that any affected First Nation groups may have and as such should not be used to fulfill First Nation consultation requirements.

#### **Executive Summary**

The P/L crossing area(s) encompassed by the proposed Shoreacres Aerial Replacement Project was assessed for archaeological potential via field reconnaissance. Eight (8) pipeline crossing route options were assessed with seven (7) having archaeological concern. With the exception of the Kootenay Canal Crossing, all proposed crossings were located on terraces with semi-intact soils within close proximity (50-100m) of previously recorded archaeological sites. Monitoring and/or Archaeological Impact Assessments are recommended for these areas. Please see below for more detailed descriptions of the areas assessed.

#### Location

#### **Location Descriptions:**

<u>TP Option – Kootenay Canal Crossing:</u> Located on the left and right banks of the Kootenay Canal, just southwest of Bird Creek.

<u>TP Option – Kootenay River Crossing:</u> Located on the left and right banks of the Kootenay River, along the Blewett Road Bridge.

<u>Shoreacres North:</u> Located on the left and right banks of the Kootenay River in the north portion of the community of Shoreacres.

Existing Transmission, Large Angle, Shallow Angle & Shoreacres South: Located at the confluence of the Slocan River and the Kootenay River.

Lazaroff: Located on the left and right banks of the Kootenay River just north of the Glade Cable Ferry Crossing.

NTS Map: 82F.05/0-6 Forest Region/District: Arrow Boundary and Kootenay Lake Forest Districts

Landforms: Terracing along the Kootenay River and at its confluence with the Slocan River.

Biogeo Zone: IDF un Aspect: E and W

**UTM (11 U):** <u>Kootenay Canal Crossing:</u> 465564e 5478207n; <u>Shoreacres North Crossing:</u> 462424e 5476450n; <u>Existing Transmission, Large Angle, Shallow Angle & Shoreacres South:</u> 461768e 5474325n.

**Disturbance Factor(s):** Existing pipeline right-of-way, agriculture (clearing, repeated cultivation, machinery movements), construction of the Kootenay Canal, residential construction and occupation, highway/bridge construction, bulldozing of roads and trails, borrowing, reservoir erosion

#### **Background Research**

Before conducting the field inspection, a search for archaeological sites was conducted using the Remote Access to Archaeological Data (*RAAD*) system maintained by the Archaeology Branch, Ministry of Tourism, Culture and the Arts. *RAAD* provides detailed geographical information for previously recorded archaeological sites in British Columbia.

| Previously Recorded<br>Sites in Area | Site Description                              | General Location<br>(estimated) |
|--------------------------------------|-----------------------------------------------|---------------------------------|
| DiQj-1                               | Surface Lithics, House Pit                    |                                 |
| DiQj-2                               | Surface Lithics, House Pit, Cache Pit         |                                 |
|                                      | Surface Lithics, Mound, House Pit, Cache Pit, |                                 |
| DIQJ-3                               | Burial                                        |                                 |
| DiQj-4                               | Surface Cultural Material                     |                                 |
| DiQj-5                               | Cultural Depression                           |                                 |
| DiQj-6                               | House Pit, Cache Pit                          |                                 |
| DiQj-7                               | Surface Lithics                               |                                 |
| DiQj-8                               | House Pit, Cache Pit, Cultural Depression     |                                 |
| DiQj-9                               | Surface Lithics, Cache Pit                    |                                 |
| DiQj-10                              | Surface Lithics, Burial                       |                                 |
| DiQj-11                              | Surface Lithics                               |                                 |
| DiQj-12                              | Burial, Cache Pit, Cultural Depression,       |                                 |
|                                      | Cultural Surface Material                     |                                 |
| DiQj-13                              | Surface Lithics                               |                                 |
| DiQj-14                              | Burial                                        | ]                               |
| DiQj-15                              | Pictograph                                    | All previously recorded sites   |
| DiQj-16                              | Petroglyph, Pictograph                        | are located within a 10km       |
| DiQj-18                              | Surface Lithics, Cache Pit, Mat Lodge         | radius of the proposed          |
| DiQj-19                              | Surface and Subsurface Lithics, Cache Pit     | development areas               |
| DiQj-20                              | Cultural Depression                           | Surrounding the Koolenay and    |
| DiQj-25                              | Surface Lithics                               | Sidean Rivers.                  |
| DiQj-26                              | House Pit, Cache Pit                          |                                 |
| DiQj-27                              | Subsurface Lithics                            |                                 |
| DiQj-28                              | Pictograph                                    |                                 |
| DiQi-1                               | Subsurface Lithics                            |                                 |
| DiQi-4                               | Surface Lithics                               |                                 |
| DiQi-6                               | Surface Lithics                               |                                 |
| DiQi-7                               | Subsurface Cultural Material                  |                                 |
| DiQi-8                               | Surface Lithics                               |                                 |
| DiQi-10                              | Surface Lithics                               |                                 |
| DiQi-11                              | Surface Lithics                               |                                 |
| DiQi-12                              | Surface Lithics, Burial, Fishing Feature      |                                 |
| DiQi-13                              | Surface Lithics                               | ]                               |
| DiQi-14                              | Surface Lithics                               | ]                               |
| DiQi-15                              | Surface Lithics                               | ]                               |
| DjQi-2                               | House Pit, Subsurface Cultural Material       |                                 |

#### **Potential Assessment**

**Methods:** Search of archaeological and historical records available through *RAAD* and search of archaeological and historical records located at the *Kootenay Cultural Heritage Centre* and at the *Eagle Vision Geomatics & Archaeology Ltd.* office.

**Criteria:** Archaeological potential was projected and assessed on the basis of documented relationships amongst archaeological remains and specific landforms and postglacial stratigraphic units in the region. **Results:** High archaeological potential based on relatively level, low elevation terrain near a perennial watercourse confluence in a major valley and in some cases immediately adjacent to recorded precontact archaeological sites and in the vicinity of numerous other recorded sites.

#### Field Methodology

Survey Dates: July 9, 2009

Survey Crew: Wayne Choquette, Nicole Kapell & Kayla Casimer

**Sampling Objective:** Ground truth the landscape and stratigraphy delineated by the archaeological potential assessment, assess the degree to which the identified landscape components survive in the subject property environment, and identify any potential threats to archaeological values posed by the proposed development.

**Traverse Type(s):** 75% systematic pedestrian survey oriented to subsurface exposures to facilitate assessment of disturbance and identification of pre-contact archaeological deposits and features in context.

**Subsurface Exposures:** deflated and bulldozed areas, road and bridge cut banks, wave-eroded terrace margins

#### Field Survey Results

#### **Survey Results:**

While assessing all eight proposed pipeline crossings, the field crew received word that only the TP Option Crossing and the Large Angle Crossing were going to be utilized. Therefore only portions of the remaining crossings were assessed.

<u>TP Option - Kootenay Canal Crossing:</u> (100% assessed) Extensive surface disturbance (100%) due to the construction of the Kootenay Canal. No pre-contact archaeological deposits or features were observed and no significant intact archaeological remains are expected to occur within the area of the identified development boundaries.

<u>TP Option – Kootenay River Crossing:</u> (85% assessed) Portions of the proposed development area are disturbed due to road and bridge construction, however some small pockets of intact soils remain on either side of the Kootenay River. Further examination is needed of a small island (accessible by small boat) which could be affected by the development. More intensive investigation of this development may be required depending upon locations and character of specific components (eg pipe location) as it has the potential to contain archaeological remains which would be disturbed by development.

<u>Shoreacres North:</u> (50% assessed) Portions of the proposed development are disturbed due to agricultural activity, however due to the presence of at least half a metre of visible fine sediment accumulation (thus potential for buried archaeological remains obscured by vegetation which provided very little exposure) and proximity to two previously recorded archaeological sites, if development were to go through in this area an Archaeological Impact Assessment would be required.

Existing Transmission, Large Angle, Shallow Angle & Shoreacres South Crossings: (50% assessed) Only the left bank of the proposed developments was assessed during the present investigation. The right bank was previously assessed by Wayne T. Choquette for Terasen Gas on November 9, 2008. The left bank of these crossings is located at the confluence of the Kootenay River and the Slocan River in the immediate vicinity of three previously recorded pre-contact archaeological sites. If the proposed crossing were to stay within the existing pipeline right-of-way, monitoring of the construction is recommended. If disturbance were to occur outside of the existing right-of-way, an Archaeological Impact Assessment is required which Eagle Vision Geomatics & Archaeology would be willing to facilitate.

Lazaroff Crossing: (50% assessed) Only the left bank of the proposed pipeline crossing was assessed

by ground inspection; it is situated on an intact narrow terrace with an east-facing margin along the Kootenay River. The right bank is a lower terrace covered with vegetation. The potential for the presence of archaeological remains is at least moderate on both sides, therefore if this crossing were to be used, an Archaeological Impact Assessment would be recommended.

#### Recommendations

The proponent has indicated that they are only developing the TP Option Crossing and the Large Angle Crossing, both of which have some cause for archaeological concern. At the Long Angle Crossing, if the proposed crossing were to stay within the existing pipeline right-of-way, monitoring of the construction is recommended. If disturbance is necessary outside of the existing right-of-way, an Archaeological Impact Assessment is required beforehand, which Eagle Vision Geomatics & Archaeology would be willing to undertake. At the <u>TP Option Crossing</u>, more intensive investigation may be required depending upon locations and character of specific components (eg pipe location), as there is potential for the presence of archaeological remains which could be disturbed by development.

I trust that this report provides you with sufficient information to facilitate project management. Should you have any further questions or require additional information, please do not hesitate to contact Wayne Choquette or Melissa Knight at Eagle Vision Geomatics and Archaeology Ltd.

Sincerely,

aper

Wayne T. Choquette Archaeologist





Westland Resources Group Inc.

Wayne T. Choquette & Eagle Vision Geomatics & Archaeology Ltd.





Westland Resources Group Inc.

Wayne T. Choquette & Eagle Vision Geomatics & Archaeology Ltd.





Westland Resources Group Inc.

Wayne T. Choquette & Eagle Vision Geomatics & Archaeology Ltd.

#### Figure 4: View northwest of the TP Option Crossing



Figure 5: View of soil stratigraphy on the left bank of the Kootenay River at the TP Option Crossing



## Appendix K SCREENING FACTORS – DEFINITIONS AND RATIONALE FOR SCORING

## Kootenay River Crossing (Shoreacres) Upgrade Project

## **Appendix K – Screening Analysis**

### Non-Financial Screening Factors - Definitions

- Natural Hazards Vulnerability
  - Considers the vulnerability of constructed facilities to natural hazards including seismic impacts, slope stability concerns and river erosion.
- Safety
  - Takes into account the risk to the public in the event of a pipeline failure.
  - Takes into account the risk to TGI with respect to any scheduled maintenance or emergency repair work required.
- Environmental
  - Considers the level of impact during construction and post construction pipeline operations the alternatives have on the surrounding environment including, environmentally sensitive areas and agricultural lands.
- Land Issues
  - Takes into account the effect that the construction activities will have on any surrounding land owners, such as loss of business and land use restrictions.
  - Considers the amount of additional ROW required and the potential impacts on the market value of real estate in the Project area.
- First Nations

- Considers the effect of the Project on the cultural values, economic well being and quality of life of First Nations citizens.
- Operational Impacts
  - Considers accessibility and operability of the facilities by TGI employees and contractors performing routine maintenance and undertaking potential system repairs.
- System Capacity
  - Considers the impact of the proposed alternative on system capacity.
- Aesthetics
  - Considers the visual effects of the proposed facilities that may be observed by residents and visitors in the Project area.

### <u>\</u> <u>Rationale for Scoring of Non-Financial Factors</u>

### Natural Hazard Vulnerability

- The TP and IP alternatives will have some vulnerability to natural hazards; in particular, the bridge crossings will have some seismic vulnerability.
- The HDD will be at a considerable depth and will be relatively immune to natural hazards. The location where it joins the existing pipeline will be outside of the area of slope stability concern associated with the east terminus of the existing crossing.

Safety

- The TP and IP alternatives will have the typical safety concerns associated with buried pipelines, for example vulnerability to third party damage.
- The HDD alternative is buried at considerable depth for its entire length and will not pose a safety concern for TGI employees or contractors.

Environmental

- The TP and IP alternatives have the typical environmental risks associated with construction and operation of buried pipelines. In addition, there is the potential for construction through areas with contaminated soils.
- The HDD is buried at considerable depth so it poses minimal environmental risk during operation. There is a small risk due to the

possibility of a leak of drilling fluids into the Kootenay River during construction.

### Land Issues

- Both the TP and IP alternatives require considerable new ROW and there is some potential impact on private properties. There is also the issue of securing rights on the two bridges owned by the city of Nelson and the impact on the Kootenay Canal structure owned by BC Hydro.
- The west end of the HDD alternative will be on land owned by TGI and the east end will terminate on TGI's existing ROW. There will be some temporary working space required on crown land; however, this alternative will see some ROW returned to the Crown.

### First Nations

- There are no known archaeological sites associated with the TP and IP alternatives and the impact on First Nations should be minimal.
- There are known archaeological sites close to the HDD drill entry point and this alternative has a slightly greater potential to impact First Nations.

**Operational Impacts** 

- The TP alternative will require additional line patrol and bridge inspections.
- The IP alternative has a pressure reduction station which will require ongoing inspection and maintenance.
- The HDD alternative is buried at depth and will have no impact on ongoing operations.

System Capacity

- The TP and HDD alternatives have approximately the same capacity and both meet the 20 year load forecast for the downstream system.
- The IP alternative has less capacity than the TP alternatives and would require reinforcement earlier that the other alternatives. The alternative would also have a lesser ability to allow expansion beyond the existing service area.

Aesthetics

- The HDD alternative will have no visible infrastructure beyond the pipeline markers that are already in place.
- The TP and IP alternatives will require additional pipeline markers and likely some signs to denote the bridge crossings. In addition, the IP alternative will require an above ground station which will be visible to the public.
# Appendix L SITE PLAN





LOGGING & GRADING LANDING SITE 20m X 50m











////// PIPE STRINGING AND STAGING AREA

KOOTENAY RIVER CROSSING (SHOREACRES) UPGRADE PROJECT SITE PLAN

ARCHEOLOGICAL AREA

# Appendix M SCHEDULE

### Kootenay River Crossing (Shoreacres) Upgrade

Preliminary CPCN Application Schedule

|                    | r toinninally or orty ipplication contoutio |                                      |          |              |              |                                                                                                                                               |  |  |
|--------------------|---------------------------------------------|--------------------------------------|----------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ID                 |                                             | Task Name                            | Duration | Start        | Finish       | 9 2010 2011                                                                                                                                   |  |  |
|                    | _                                           |                                      | Duration | Otart        | 1 mion       | 1, 200   Qtr 2, 200   Qtr 3, 200   Qtr 4, 200   Qtr 1, 201   Qtr 2, 201   Qtr 3, 201   Qtr 4, 201   Qtr 1, 201   Qtr 2, 201   Qtr 3, 201   Qt |  |  |
|                    | 0                                           |                                      |          | <b>T</b>     |              | e MarApri a Jun Jul Au e Oct o De Jan e MarApri a Jun Jul Au e Oct o De Jan e MarApri a Jun Jul Au e Oc                                       |  |  |
| 0                  |                                             | Shoreacres Crossing Upgrade          | 658 days | Tue 24/03/09 | Thu 29/09/11 |                                                                                                                                               |  |  |
| 1                  |                                             | Preliminary Engineering              | 190 days | Tue 24/03/09 | Mon 14/12/09 |                                                                                                                                               |  |  |
| 8                  |                                             | CPCN                                 | 265 days | Tue 17/11/09 | Mon 22/11/10 |                                                                                                                                               |  |  |
| 9                  | 1                                           | Draft CPCN Application               | 33 wks   | Tue 17/11/09 | Mon 05/07/10 |                                                                                                                                               |  |  |
| 10                 | 1                                           | Application Review                   | 5 mons   | Tue 06/07/10 | Mon 22/11/10 |                                                                                                                                               |  |  |
| 11                 |                                             | CPCN approval                        | 0 days   | Mon 22/11/10 | Mon 22/11/10 | ▲ 22/11                                                                                                                                       |  |  |
| 12                 |                                             | Detailed Engineering                 | 4 mons   | Tue 23/11/10 | Mon 14/03/11 |                                                                                                                                               |  |  |
| 13                 |                                             | Material Procurement                 | 3 mons   | Tue 21/12/10 | Mon 14/03/11 |                                                                                                                                               |  |  |
| 14                 |                                             | Contract Preparation                 | 14 wks   | Tue 23/11/10 | Mon 28/02/11 |                                                                                                                                               |  |  |
| 15                 |                                             | Contract Award                       | 8 wks    | Tue 01/03/11 | Mon 25/04/11 |                                                                                                                                               |  |  |
| 16                 |                                             | Develop OGC application              | 119 days | Tue 08/09/09 | Fri 19/02/10 |                                                                                                                                               |  |  |
| 17                 |                                             | OGC Approval                         | 9 mons   | Mon 22/02/10 | Fri 29/10/10 |                                                                                                                                               |  |  |
| 18                 |                                             | Construction Window                  | 0 days   | Fri 01/04/11 | Fri 01/04/11 |                                                                                                                                               |  |  |
| 19                 |                                             | Access construction and Mobilization | 1 mon    | Fri 01/04/11 | Thu 28/04/11 |                                                                                                                                               |  |  |
| 20                 |                                             | Drill Contract                       | 2 mons   | Fri 29/04/11 | Thu 23/06/11 |                                                                                                                                               |  |  |
| 21                 |                                             | Tie ins                              | 2 wks    | Fri 24/06/11 | Thu 07/07/11 | ို                                                                                                                                            |  |  |
| 22                 |                                             | In service                           | 0 days   | Thu 07/07/11 | Thu 07/07/11 | 07/07                                                                                                                                         |  |  |
| 23                 |                                             | Site clean up                        | 1 mon    | Fri 08/07/11 | Thu 04/08/11 |                                                                                                                                               |  |  |
| 24                 |                                             | Tender demolition                    | 4 mons   | Fri 15/04/11 | Thu 04/08/11 |                                                                                                                                               |  |  |
| 25                 |                                             | Demo existing crossing               | 2 mons   | Fri 05/08/11 | Thu 29/09/11 |                                                                                                                                               |  |  |
|                    |                                             |                                      |          |              |              |                                                                                                                                               |  |  |
|                    |                                             |                                      |          |              |              |                                                                                                                                               |  |  |
|                    |                                             |                                      |          |              |              |                                                                                                                                               |  |  |
|                    |                                             |                                      |          |              |              |                                                                                                                                               |  |  |
|                    |                                             |                                      |          |              |              |                                                                                                                                               |  |  |
|                    |                                             |                                      | Task     |              | ) М          | ilestone I External Tasks                                                                                                                     |  |  |
| Pro                | ect: Sh                                     | oreacres Crossing Upgrade            | Split    |              |              | ummary External MileTask 🔶                                                                                                                    |  |  |
| Date: Fri 11/06/10 |                                             |                                      | Progress |              | D,           | roject Summary Solit 小                                                                                                                        |  |  |
| l                  |                                             |                                      |          |              |              | ojou duminary w w Opin V                                                                                                                      |  |  |

# Appendix N PROJECT COMMUNICATION PLAN



Kootenay River Crossing (Shoreacres) Upgrade Project Communications Plan June 2010

## Overview

Terasen Gas has applied to the British Columbia Utilities Commission (BCUC) for a permit to upgrade an aerial crossing that is located on the TGI Interior Transmission System Savona-Nelson Main Line. The crossing, built in 1957, spans the Kootenay River near the community of Shoreacres (a small community approximately mid way between Castlegar and Nelson) and serves approximately 5,200 customers downstream of the crossing.

The Project is intended to ensure the integrity of an existing pipeline crossing which is nearing the end of its useful structural life and is challenged by slope instability that endangers the anchor structures on the east side of the crossing.

The Project involves:

- decommissioning of the existing nominal pipeline size ("NPS") 8 (219.1mm) Kootenay River aerial crossing near the community of Shoreacres,
- abandonment of approximately 650 m of NPS 6 (168.3 mm) transmission pressure pipe, and
- replacement of both with approximately 880 m of new NPS 6 transmission pressure pipe to be installed using Horizontal Directional Drill ("HDD") technology.

The installation of new pipelines ensures the continued safe and reliable supply of natural gas to customers in the region. The use of Horizontal Directional Drilling (HDD) technology addresses the risks related to both the deteriorating condition of the crossing structure and pipe and the slope instability concerns at the east terminus of the crossing.

Terasen Gas expects to submit a Certificate of Public Convenience and Necessity (CPCN) to the (BCUC for this project in July 2010.

Approval for the project is expected in late 2010, with project construction beginning in spring 2011.

## **Communication Objectives**

The following communication objectives guide the strategies and actions of this plan:

- Create awareness of the Kootenay River Crossing (Shoreacres)Upgrade Project ("Shoreacres")
- Ensure that stakeholders and interested parties are informed and aware of the project
- Address any stakeholder concerns
- Support company values of safety, environmental commitment, customer value and community in all communications, as appropriate
- Position Terasen as a leading integrated energy solutions provider in B.C.

## Audiences/Stakeholders

- Residents living within one kilometre of the project site
- City of Castlegar
- City of Nelson
- Central Kootenay Regional District
- Teck Cominco
- BC Hydro
- Recreational Users of the Ward's Ferry Trail
- Agricultural Land Reserve and Ministry of Environment
- Oil and Gas Commission
- Department of Fisheries and Oceans and Transport Canada

## **Key Messages**

- The Shoreacres project will ensure the continued safe, reliable supply of natural gas to more than 5,200 customers in the area.
- The Shoreacres upgrade project addresses the risks related to both the deteriorating condition of the crossing structure and pipe and the slope instability concerns at the east terminus of the crossing.
- This project is driven by safety and reliability considerations and is part of our ongoing integrity management of our system.
- Natural gas delivery will not be affected during construction of the pipeline upgrade.
- The upgraded pipelines will remain within existing Terasen Gas right-of-way, both on land and across the water.
- The project is estimated to cost approximately \$8 million.

#### **Project Timeline**

• The project is scheduled to be completed and in service by the end of 2011.

#### **HDD** Technology

- HDD technology is the safest method with the lowest environmental and property impact.
- HDD technology is a common industry accepted method for replacing river pipeline crossings, and Terasen Gas has utilized the technology on numerous occasions.
- HDD technology is considered the best choice on the basis of cost, low environmental impact and the ability to mitigate the deteriorating condition of the crossing structure and pipe and the slope instability concerns at the east terminus of the crossing.

#### Environment

• Terasen Gas conducts business in a safe and environmentally responsible manner. Any potential environmental impacts associated with this project will be mitigated through the implementation of an environmental management plan during construction and site restoration.

### Safety

The Terasen Gas transmission and distribution pipeline system has an excellent safety record. This project is part of our on-going system maintenance, which takes place around the province every year.

### **Public Consultation**

- Terasen Gas has been consulting with stakeholders and landowners with regard to this project since January 2010.
- With respect to issues of public safety, schedule, right of ways, temporary construction space, access and accommodation, Terasen Gas will continue to consult with property owners.

## **Strategies and Actions**

To support the communication objectives, the following strategies and actions are recommended for communicating with the identified audiences.

- Project update communications between Terasen Gas and the following:
  - o Mayor Lawrence Chernoff, City of Castlegar,
  - o Mayor John Dooley, City of Nelson,
  - o Residents living within one kilometre of the project site
  - Teck Cominco, Pat Murray
  - o Trans Canada Trail, Blair Baldwin
  - o Ministry of Transportation and Highways, Deborah Tan and Rajeeta Bains
  - o BC Hydro, Larry Serko, Valerie Fay and Patricia Richardson
- Project communication to Terasen Gas employees
- Newspaper advertising

| Activity                                                                       | Completed by                              | Date                                   |
|--------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|
| Initial communication<br>of project with local<br>residents                    | Community Relations,<br>Property Services | January 2010                           |
| Informational meeting<br>with Mayor Lawrence<br>Chernoff, City of<br>Castlegar | Community Relations                       | April 2010                             |
| Communication with government agencies                                         | Community Relations,<br>Property Services | November<br>2009 – May<br>2010         |
| Ad in local newspaper                                                          | <b>Community Relations</b>                | February 2010                          |
| Communication with<br>local residents and<br>stakeholders                      | Community Relations                       | One month<br>prior to<br>project start |
| Ad in local newspaper                                                          | Community Relations                       | Two weeks<br>prior to<br>project start |
| Project information on<br>TGI website                                          | Communications                            | Two weeks<br>prior to<br>project start |
| Communication with<br>local residents and<br>stakeholders                      | Community Relations                       | At project completion                  |
| Ad in local newspaper                                                          | Community Relations                       | At project<br>completion               |
| Project information on<br>TGI website                                          | Communications                            | At project completion                  |

## **Obstacles and Opportunities**

To the point of filing this CPCN application, feedback on the project has been positive and encouraging. Terasen Gas believes all identified issues can be mitigated.

Stakeholder concerns that have been cited, or are anticipated, include:

- spread of noxious weeds
- stakeholder vehicular access
- site restoration and remediation
- noise impacts associated with construction equipment and movement of support vehicles

In all cases, Terasen Gas will work with the affected property or business owner to mitigate issues.

It is our intent that good relationships with property owners, First Nations and other stakeholders will be maintained through all phases of the project. Terasen Gas has every expectation that the public consultation and communication process will help diminish potential impacts, ensure the project remains on schedule, and mitigate unexpected project issues.

This project represents an opportunity to showcase our integrity program and other good work practices – including environmental management and First Nations relationships.

# Appendix O STAKEHOLDER CONTACT SUMMARY

### Kootney River Crossing (Shoreacres) Upgrade Project

### Public Consultation Contact Log

|                                         | Terasen                  | Contact Information                | Date of    |                                                                                                 |                                |
|-----------------------------------------|--------------------------|------------------------------------|------------|-------------------------------------------------------------------------------------------------|--------------------------------|
| Agency/Party                            | Representative           | (i.e. phone, address, etc)         | Contact    | Summary of Party's Response to Contact                                                          | Email                          |
| Communities/Local Government            |                          |                                    |            |                                                                                                 |                                |
| Central Kootenay Regional District      |                          |                                    |            | Spoke with John Vovkin and informed him about the project. I mailed a letter with               |                                |
| (CKRD)                                  | E. Picco                 | John Vovkin, Director, CKRD        | 11-Jun-10  | the information and a copy of the ad.                                                           | (no email avaialble)           |
|                                         |                          |                                    |            | Spoke with Walter Popoff and emailed General information about the Project. He                  |                                |
| Central Kootenay Regional District      |                          |                                    |            | referred me to John Vovkin, who is also a Director of the Regional District of                  |                                |
| (CKRD)                                  | E. Picco                 | Walter Popoff, CKRD                | 11-Jun-10  | Centreal Kootenav                                                                               | walteck@telus.net              |
|                                         |                          |                                    |            | Spoke with Jim Gustafson and sent him an email with general Project information.                |                                |
| Central Kootenay Regional District      |                          | Jim Gustafson, Chief               |            | He suggested I advise Walter Popoff, who is involved with the Regional District                 |                                |
| (CKRD)                                  | F Picco                  | Administrative Officer             | 11-Jun-10  | Board as an area director for the Slocan Valley                                                 | igustafson@rdck.bc.ca          |
| (                                       |                          |                                    |            | Left voice mail and sent email with general Project information. Mentioned that I               |                                |
|                                         |                          |                                    |            | would call him week of June 14. He replied to the email and noted for Terasen to                |                                |
| City of Nelson                          | E Picco                  | Mayor John Dooley                  | 11- lun-10 | keep up the good work                                                                           | idooley@nelson.ca              |
|                                         | 2.11000                  |                                    | 11 Guil 10 | Spoke to Mayor Chernoff about the Project starting Spring 2011 Advised we will                  | <u>Jubbley encision.ca</u>     |
|                                         |                          |                                    |            | keep him updated and informed. He mentioned he saw advertisements in the local                  |                                |
| City of Castlogar                       | E Bicco and A Hopposey   | Mayor Lawronco Chorpoff            | 12 Apr 10  | neep him updated and informed. The mentioned he saw advertisements in the local                 | mayor@castlogar.ca             |
| City of Castlegal                       | L. FICCO and A. Hennessy |                                    | 13-Api-10  | papers.                                                                                         | <u>Inayor@castlegal.ca</u>     |
|                                         |                          |                                    |            |                                                                                                 |                                |
| ENVIRONMENT                             |                          |                                    |            |                                                                                                 |                                |
| Trans Canada Trail                      | F Picco                  | Harold Seller, Project Facilitator | 4- lup-10  | Confirmed by email that the Ward's Ferry Trail is not part of the Trans Canada Trail            | hikerbarold@gmail.com          |
|                                         | E.11000                  |                                    | 4-5011-10  | Blair is the trail stewart for the Trans Conside trail. Sont him on email regarding the         | <u>mixemaroid@gmail.com</u>    |
|                                         |                          |                                    |            | Blair is the train stewart for the proposed location. Dent is going to determine if there is an |                                |
|                                         |                          |                                    |            | project and a map of the proposed location. Blair is going to determine if there is any         |                                |
| <b>T</b> 0 1 <b>T</b> 1                 |                          | Disia Dalahasia                    | Dec-09 &   | Impact to the trail when we go ahead with construction. Typically the group is                  |                                |
| Trans Canada Trail                      | R. Sulentich             | Blair Baldwin                      | 25-Jan-10  | concerned about restoring the trail to the original condition.                                  | Blair Baldwin (pincon@snaw.ca) |
|                                         |                          |                                    |            |                                                                                                 |                                |
| MEDIA                                   |                          | Nalasa Las Madia Duusa             |            | Two Transmorteries to a laborate in the Orational Newson, Thursday, February                    |                                |
|                                         | 5 5                      | Nelson Lee - Media Buyer -         |            | Two Terasen project ad placements in the Castlegar News on Thursday, February                   |                                |
| Media - Castlegar News                  | E. PICCO                 | Wasserman-Partners                 | 19-Jan-10  | 4 and 11, 2010                                                                                  | Niee@Wasserman-Partners.com    |
|                                         |                          | Nelson Lee - Media Buyer -         |            | Two Terasen project ad placements in the Nelson Star on Thursday, February 4 and                | 1                              |
| Media - Nelson Star                     | E. Picco                 | Wasserman-Partners                 | 19-Jan-10  | 11, 2010                                                                                        | Niee@Wasserman-Partners.com    |
|                                         |                          | Nelson Lee - Media Buyer -         |            | Two Terasen project ad placements in the Nelson Daily News on Thursday,                         |                                |
| Media - Nelson Daily News               | E. Picco                 | Wasserman-Partners                 | 19-Jan-10  | February 4 and 11, 2010                                                                         | Niee@Wasserman-Partners.com    |
| Ministry of Transportation and Highways | 1                        | Deborah Tan - Project              |            | Initial email sent requesting jurisdiction information for access road. Deborah                 |                                |
| Nelson                                  | C. Bohun                 | Management Technician              | 4-Dec-09   | forwarded request to Rajeeta Bains.                                                             |                                |
| Ministry of Transportation and Highways | 1                        | Rajeeta Bains - Development        |            | Follow up email sent re: road status. Response email received from Rajeeta on Jan               |                                |
| Nelson                                  | C. Bohun                 | Technician                         | 7-Dec-09   | 6/10. Public road does not include the access road in question.                                 | Rajeeta.Bains@gov.bc.ca        |
|                                         |                          |                                    |            | Email sent to Ed requesting information regarding clearing, status of property as               |                                |
|                                         |                          | Edward Nagy - Small Scale          |            | woodlot and confirmation of whether forestry road affected. Response from Ed rec'd              | 1                              |
| Arrow Boundary Forest District          | C. Bohun                 | Salvage Coordinator                | 26-Nov-09  | Nov 30/09 requesting additional info.                                                           | edward.nagy@gov.bc.ca          |
|                                         |                          | Edward Nagy - Small Scale          |            |                                                                                                 |                                |
| Arrow Boundary Forest District          | C. Bohun                 | Salvage Coordinator                | 7-Dec-09   | Additional info sent to Arrow Boundary Forestry District                                        |                                |
|                                         |                          |                                    |            | Name of licensee (Kalesnikoff Lumber Co.) for area provided to determine if project             |                                |
|                                         |                          | Edward Nagy - Small Scale          |            | area falls within license. Ed confirmed that no forestry service road runs within               |                                |
| Arrow Boundary Forest District          | C. Bohun                 | Salvage Coordinator                | 14-Dec-09  | project area and that road appears to be BC Hydro access road                                   |                                |
|                                         |                          |                                    |            |                                                                                                 |                                |
| Resident Communication                  |                          |                                    |            |                                                                                                 |                                |
|                                         |                          | 2460 Filipoff Rd, Castlegar, BC    |            |                                                                                                 |                                |
|                                         | 1                        | V1N 4R9                            |            | Received email from Valerie Fipke confirming their concerns are resolved with                   |                                |
| Valerie and Desmond Fipke               | E. Picco                 | Tel: 250-399-4287                  | 24-Jun-10  | respect to the access to the Project construction Site.                                         |                                |
| · · · · ·                               |                          | 2460 Filipoff Rd, Castlegar, BC    |            |                                                                                                 |                                |
|                                         |                          | V1N 4R9                            |            | Emailed summary responses acknowledging their concerns. Requested a reply to                    |                                |
| Valerie and Desmond Fipke               | E. Picco                 | Tel: 250-399-4287                  | 22-Jun-10  | confirm she received email.                                                                     |                                |

### Public Consultation Contact Log

|                                        | Terasen            | Contact Information               | Date of    |                                                                                         |                         |
|----------------------------------------|--------------------|-----------------------------------|------------|-----------------------------------------------------------------------------------------|-------------------------|
| Agency/Party                           | Representative     | (i.e. phone, address, etc)        | Contact    | Summary of Party's Response to Contact                                                  | Email                   |
|                                        |                    | 2460 Filipoff Rd, Castlegar, BC   |            |                                                                                         |                         |
|                                        |                    | V1N 4R9                           |            | Telephoned Valerie Fipke and responded to their concerns outlined in her email of       |                         |
| Valerie and Desmond Fipke              | E. Picco           | Tel: 250-399-4287                 | 16-Jun-10  | May 11.                                                                                 |                         |
|                                        | F D'               |                                   |            | Letter and ad introducing the project, proposed timelines and Terasen contact           |                         |
| Residents closest to the project       | E. PICCO           |                                   | 28-Jan-10  | Jinformation.                                                                           |                         |
| Residences within 1 km of project site | F Picco            |                                   | 28-Apr-10  | Dinformation                                                                            |                         |
| Resident close to project site         | Property Services  |                                   | Ongoing    | Reconfirming use of driveway/addressing access                                          |                         |
|                                        | T Toporty Oct Noca | 2515 Alexis Rd, Castlegar, BC     | Oligoing   |                                                                                         |                         |
|                                        |                    | V1N 4P6                           |            | Left voice mail regarding project and follow up to mailed letter. I provided my contact | t                       |
| Wallace and David Popoff               | E. Picco           | Tel: 250-359-7657                 | 11-May-10  | ) information and informed then to call me if they had any questions or concerns.       |                         |
|                                        |                    | 2506 Alexis Rd, Castlegar, BC     | , í        |                                                                                         |                         |
|                                        |                    | V1N 4P6                           |            | Left voice mail regarding project and follow up to mailed letter. I provided my contact | t                       |
| Walter and Winnie Rezanoff             | E. Picco           | Tel: 250-359-7200                 | 11-May-10  | information and informed then to call me if they had any questions or concerns.         |                         |
|                                        |                    | 2730 Mount Dale PL. Blind Bay,    |            |                                                                                         |                         |
|                                        |                    | BC V0E 1H1                        |            | No number listed. Looked at 411.ca and contacted Telus directory assistance as a        |                         |
| Shelly Lee Skarsen                     | E. Picco           | (No number available)             | 11-May-10  | double check.                                                                           |                         |
|                                        |                    | 2354 Filipoff Rd, Castlegar, BC   |            |                                                                                         |                         |
|                                        |                    | V1N 4R9                           | 44 44      | No answer. Not able to leave a voice mail. Number seems like a fax number. Family       | 4                       |
| Lester (Les) and Theano Mary Thiessen  |                    | 2456 Eilipoff Bd. Costlogor, BC   | 11-May-10  | name in 411.ca number was not the same family I called. Needs further work.             |                         |
|                                        |                    | 2450 Filipul Ru, Casilegal, BC    |            |                                                                                         |                         |
| Neil David and Linda Yvonne Finke      | F Picco            | Tel: 250-399-4287                 | 11-May-10  | This number listed in 411 ca is not in service                                          |                         |
| Nei David and Linda Tvorne Tipke       | L.11000            | 2460 Filipoff Rd, Castlegar, BC   | TT-Way-TC  | Snoke with Valerie Finke and she was concerned about the access road used for           |                         |
|                                        |                    | V1N 4R9                           |            | project and some other items as per her email to me. Forwarded email to Neil            |                         |
| Desmond and Valerie Fipke              | E. Picco           | Tel: 250-399-4287                 | 11-Mav-10  | Deliger for comments and response.                                                      |                         |
|                                        |                    | Bob and Karen Gretchen, 2466      |            |                                                                                         |                         |
| George Robert (Bob) and Karen          |                    | Filipoff Rd, Castlegar, BC        |            | Left voice mail regarding project and follow up to mailed letter. I provided my contact | t                       |
| Gretchen                               | E. Picco           | V1N 4R9 Tel: 250-399-4244         | 11-May-10  | information and informed then to call me if they had any questions or concerns.         |                         |
|                                        |                    |                                   |            | Telephone call to Gretchens advising that Terasen reps would be visiting tower site     |                         |
|                                        |                    |                                   |            | adjacent to their property and would be gaining access through their property.          |                         |
|                                        |                    | Bob and Karen Gretchen,owners     |            | Gretchens have no issues with Terasen using property for access and are aware of        |                         |
| Bob and Karen Gretchen                 | C. Bohun           | of Lots 1 and 2 Plan 16570        | 27-Oct-09  | plans to replace aerial crossing.                                                       |                         |
|                                        |                    |                                   |            |                                                                                         |                         |
| INDUSTRY                               |                    |                                   |            |                                                                                         |                         |
|                                        |                    |                                   |            | Telephone call and email to Larry requesting Hydro's consideration of temporary         |                         |
|                                        | 0.0.1              | Larry Serko, Property Rep         |            | access agreement through Kootenay Canal. Larry referred question to Joan Muir.          |                         |
| BC Hydro and Power Authority           | C. Bonun           | Tel: 250-549-8561                 | 9-Feb-10   | Joan Muir forwarded request to Valerie Fay.                                             | larry.serko@bchydro.com |
| BC Hydro and Dower Authority           | C. Bohun           | Valerie Fay, Property Coordinator | 19 Eab 10  | valerie confirmed that she is party responsible for coordinating responses for          | valorio fov@bobydro.com |
| BC Hydro and Fower Authonity           | C. DUITUIT         | Tel. 1-604-528-7796               | 26-Feb-10  |                                                                                         |                         |
|                                        |                    | Valerie Fay, Property Coordinator | 1 Mar-10   | ,<br>Emails exchanged regarding location, use of access route and request for onsite    |                         |
| BC Hydro and Power Authority           | C Bohun            | Tel: 1-604-528-7796               | 8-Mar-10   | meeting for David Kan and Hydro rep                                                     |                         |
|                                        | or Donali          |                                   | 0 11141 10 | Email received providing Chris Dahl's name as contact for on site meeting with          |                         |
| BC Hydro and Power Authority           | C. Bohun           | Patricia Richardson               | 9-Mar-10   | David Kan                                                                               |                         |
| ,                                      |                    |                                   |            | Telephone call to Stan to determine whether project area falls within Kalesnikoff's     |                         |
|                                        |                    |                                   |            | license area. Stan confirmed that project area falls outside of their license area and  | 1                       |
|                                        |                    | Stan Hadikin                      |            | is within unlicensed Crown land. Stan offered assistance with clearing and with         |                         |
| Kalesnikoff Lumber Co.                 | C. Bohun           | Tel: 250-399-4211                 | 14-Dec-09  | purchasing any cleared wood.                                                            | stanhd1@kalesnikoff.com |
|                                        |                    | Pat Murray, Consultant, for Teck  |            | Requesting ROW from Teck Cominco for new pipeline. Permission for geotechnical          |                         |
| Teck Cominco                           | Property Services  | Cominco                           | Jan-10     | investigation on their property.                                                        | pat.murray@amec.com     |

# Appendix P FIRST NATIONS INFORMATION

## **Ktunaxa Nation Council**

The Ktunaxa Nation Council originated in 1970 as the Kootenay Indian District Council to promote the political and social development of the Nation.

In 1991 the Council's name was changed to Ktunaxa/Kinbasket Tribal Council (K/KTC) to reflect the origins of the two language groups (Ktunaxa and Secwepemc) in the Traditional Territory. In 2005 the Council's name was changed to Ktunaxa Nation Council (KNC).

The majority of Ktunaxa Nation citizens originate from the Ktunaxa or Kootenai culture. However, the Nation also contains descendants of the Kinbasket family, a small group of Shuswap (Secwepemc) people who journeyed east from Shuswap territory in the mid-1800's into Ktunaxa territory looking for a permanent home. Ktunaxa leadership allowed the Shuswap Kinbasket people to stay in Ktunaxa territory where they eventually settled in the Invermere area and became members of the Ktunaxa Nation.

The goals of the Ktunaxa Nation Council include preservation and promotion of Ktunaxa traditional knowledge, language and culture, community and social development and wellness, land and resource development, economic investment and self-government.

The Ktunaxa Nation Council (KNC) is accountable to the Chiefs and Council of the Ktunaxa Nation.

The programs and services of the KNC and its affiliates are available to KNC member Bands, Nation members living on and off reserve, and to other status and non-status persons living within Ktunaxa Traditional Territory.

The KNC also serves as an umbrella organization for several societies, committees and corporations which are engaged in the provision of programs and services to Ktunaxa citizens.

It is also the goal of the Ktunaxa Nation Council and its member Bands to work with our neighbours and build strong relationships to strengthen the regional economy within the Kootenays.

The Traditional Territory of the Ktunaxa Nation covers approximately 70,000 square kilometres (27,000 square miles) in south-eastern British Columbia and historically included parts of Alberta, Montana, Washington and Idaho.

All lands and resources in the Traditional Territory are to be managed according to the natural law given to the Ktunaxa Nation by the Creator:

#### ?aknumu¢ti‡i‡

Human beings have the ability to destroy the land and many livings things. Therefore, the Creator gave the Ktunaxa Nation a set of laws on how to live with the land and not against it.

The Ktunaxa Nation is developing both operational and governance structures to take on this responsibility as outlined by the Creator and to realize the Lands Sector Vision.

#### LANDS SECTOR VISION STATEMENT

We the Ktunaxa and Kinbasket people envision ourselves working together as one Nation to responsibly care for the lands and resources within our Territory. Our stewardship of the lands and resources will be based on our sacred covenant with the Creator and our traditional values of:

- Ensuring land, air and water will be clean and healthy.
- Ensuring access to, and protection of, traditional foods and medicines.
- Balancing the economic use of land with cultural and spiritual values.
- Ensuring that long-term sustainability and ecological integrity take precedence.
- Following natural law; taking only what you need.

We envision a healthy environment in which all Ktunaxa and Kinbasket people can move freely throughout the Territory. We will exercise our rights to derive benefits from the lands and resources without compromising the future for our grandchildren and their grandchildren. Not only will our past heritage be preserved but we will be developing new connections with the land and each other.

We envision ourselves playing a central role in all decisions pertaining to lands and resources in our Territory. We will manage the lands and resources through healthy working relationships with ourselves and others based on understanding, respect and equality.





16705 Fraser Highway Surrey, BC V4N 0E8 Tel: 604 576-7000 Fax: 604 592-7677 Toll Free: 1-800-773-7001 terasengas.com

February 19, 2010

Mr. Rae Warden **Ktunaxa Nation Council** 7468 Mission Road Cranbrook, British Columbia V1C 7E5

Dear Mr. Warden

RE: Kootenay River Crossing (Shoreacres) Upgrade

As you know Terasen Gas is planning decommissioning the existing pipeline at Terasen's Kootenay River aerial crossing near the community of Shoreacres and replacing it with approximately 880 m of new NPS 6 transmission pressure pipe installed using Horizontal Directional Drill technology. This project will address two primary concerns; the deteriorating condition of the crossing pipe and structure and slope stability concerns at the east terminus of the crossing. The existing crossing is nearing the end of its useful life and recent inspections have identified the need for significant refurbishment if it is to remain in service. The east end of the crossing is located on a steep slope and inspections have regularly identified surface sloughing as a concern.

The new crossing begins on Terasen owned land near the west end of the existing crossing and will rejoin the existing right-of-way approximately 650 m north of the east terminus of the aerial crossing, thereby avoiding the area of slope instability at the east terminus. The new alignment will require approximately 475 m of new right-of-way. The installation of the new crossing and the decommissioning and removal of the existing crossing pipe and structure is being planned to occur in 2011.

Temporary working space may be required at certain locations during the Horizontal Directional Drill pipe string pull back and other installation staging. These working spaces will be included while securing right-of-way from Crown Land. A narrow strip of Crown Land will be needed for right-of-way for the new Horizontal Directional Drill alignment.

All required environmental permits and approvals for the project will be identified and applied for during the planning phase of the project. Agency notifications, permits and approvals are anticipated under, but not limited to, the Fisheries Act, Species at Risk Act,

Navigable Waters Protection Act, Water Act, Forest and Range Practices Act, Heritage Conservation Act and Land Act. Terasen requires an approval from the British Columbia Oil and Gas Commission (OGC) to support this project as well as approval of a Certificate of Public Convenience and Necessity from the British Columbia Utilities Commission.

Ktunaxa Nation's Nupqu Development Corporation has been working with Terasen on opportunities arising from the project and is registered in the Terasen procurement process. Terasen has also been working with Eagle Vision on Archeological Studies.

In 2008 Terasen worked with Scott Bissett to obtain employment for members during Terasen's Brilliant Horizontal Directional Drill in Castlegar and we look forward to continuing that relationship.

It is my hope you will find this letter and attached maps useful in your review of the proposed Kootenay River Crossing (Shoreacres) Upgrade project. I will be your main contact for the planning and permitting stages of this project and I can be reached at my office at: 604-592-7686 or on my cell phone at: 604-785-8947 also I am always available to visit your community to discuss the project in person. I look forward to working with you on this project.

Respectfully; Bruce Falstead

Aboriginal Relations Manager

cc: Neil Bolger, Terasen Gas

Attachment: Site Maps



Purple line is our existing transmission pipeline (over the river) Yellow is the proposed path for the new transmission pipeline (under the river)



## **Okanagan Nation Alliance**

The seven member bands of the Okanagan Nation Alliance are Lower Similkameen Indian Band, Okanagan Indian Band, Osoyoos Indian Band, Penticton Indian Band, Upper Nicola Indian Band, Upper Similkameen Indian Band and Westbank First Nation.

Traditionally, Okanagans (syilx) occupied an area which extended over approximately 69 000 square kilometers. The northern area of this territory was close to the area of Mica Creek, just north of modern day Revelstoke, BC, and the eastern boundary was Kootenay Lake. The southern boundary extended to the vicinity of Wilbur, Washington and the western border extended into the Nicola Valley.

"S-Ookanhkchinx" in the Okanagan language translates to mean "transport toward the head or top end this refers to the people traveling from the head of the Okanagan Lake to where the Okanagan river meet the Columbia river. In other words Okanagan Lake and Okanagan River as well as other water systems were the traditional transportation routes of the syilx.

The Okanagan people were hunters and gatherers, and were noted to be seminomadic. Their staple diet consisted of deer, salmon, rabbit and other wild game. The Okanagan's were also gatherers of roots, berries and various other plants.

The first contact with the Okanagans was probably made in the late 1700's through the Hudson's Bay Company. One of the first actual contact dates was recorded in 1805 at Fort Kamloops. The Hudson's Bay "brigade trail" led right through the Okanagan Nation's territory, from Fort Kamloops to Fort Colville, presently know as Colville, Washington. U.S.A.

From that point the influx of European settlers was slow and yet steady, and both the Okanagans and Europeans worked towards a living arrangement that would satisfy both. It was understood that Okanagans would continue to use their traditional hunting, fishing and gathering grounds.

As settlement of the Okanagan increased, the establishment of the international border and the colony of British Columbia joining confederation, put considerable pressure on the Provincial government in B.C. to designate reserves for Native people. This would allow for the settlers to formally own the lands they settled on.

Reserves were finally established in the early 1900's. The Okanagan people opposed the establishment of the reserves without first having negotiated a treaty. Today the Okanagan people still believe that the land is theirs, as no treaty has been negotiated.

**Okanagan Nation Traditional Territory** 





16705 Fraser Highway Surrey, BC V4N 0E8 Tel: 604 576-7000 Fax: 604 592-7677 Toll Free: 1-800-773-7001 terasengas.com

February 19, 2010

Mr. Jay Johnson Okanagan Nation Alliance 3255C Shannon Lake Road, Westbank, British Columbia V4T 1V4

Dear Mr. Johnson

RE: Kootenay River Crossing (Shoreacres) Upgrade

As you know Terasen Gas is planning decommissioning the existing pipeline at Terasen's Kootenay River aerial crossing near the community of Shoreacres and replacing it with approximately 880 m of new NPS 6 transmission pressure pipe installed using Horizontal Directional Drill technology. This project will address two primary concerns; the deteriorating condition of the crossing pipe and structure and slope stability concerns at the east terminus of the crossing. The existing crossing is nearing the end of its useful life and recent inspections have identified the need for significant refurbishment if it is to remain in service. The east end of the crossing is located on a steep slope and inspections have regularly identified surface sloughing as a concern.

The new crossing begins on Terasen owned land near the west end of the existing crossing and will rejoin the existing right-of-way approximately 650 m north of the east terminus of the aerial crossing, thereby avoiding the area of slope instability at the east terminus. The new alignment will require approximately 475 m of new right-of-way. The installation of the new crossing and the decommissioning and removal of the existing crossing pipe and structure is being planned to occur in 2011.

Temporary working space may be required at certain locations during the Horizontal Directional Drill pipe string pull back and other installation staging. These working spaces will be included while securing right-of-way from Crown Land. A narrow strip of Crown Land will be needed for right-of-way for the new Horizontal Directional Drill alignment.

All required environmental permits and approvals for the project will be identified and applied for during the planning phase of the project. Agency notifications, permits and

approvals are anticipated under, but not limited to, the Fisheries Act, Species at Risk Act, Navigable Waters Protection Act, Water Act, Forest and Range Practices Act, Heritage Conservation Act and Land Act. Terasen requires an approval from the British Columbia Oil and Gas Commission (OGC) to support this project as well as approval of a Certificate of Public Convenience and Necessity from the British Columbia Utilities Commission.

It is my understanding that the Okanagan Nation Alliance has developed a process to address appropriate consultation and I look forward to working with you to accomplish what is required.

It is my hope you will find this letter and attached maps useful in your review of the proposed Kootenay River Crossing (Shoreacres) Upgrade project. I will be your main contact for the planning and permitting stages of this project and I can be reached at my office at: 604-592-7686 or on my cell phone at: 604-785-8947 also I am always available to visit your community to discuss the project in person. I look forward to working with you on this project.

Respectfully;

Bruce Falstead

Aboriginal Relations Manager

cc: Neil Bolger, Terasen Gas

Attachment: Site Maps



Purple line is our existing transmission pipeline (over the river) Yellow is the proposed path for the new transmission pipeline (under the river)



## The Sinixt Nation Society

#### http://www.firstnations.eu/invasion/sinixt.htm

The Sinixt, known also as the Arrow Lakes Indian Band, are the First Peoples of the Upper Columbia Basin, a watershed area that spans British Columbia (BC) and Washington State. The "Lakes" indigenous people were given their name because their territory was centered on the waterways of the Arrow Lakes region.

"When the first European explorers arrived in this area, they encountered a rich culture that had flourished in this region for many thousands of years. Despite an apparent genocide perpetrated against the Sinixt, and having been declared officially extinct by the Canadian government, descendants of the Arrow Lakes Peoples continue to maintain a presence locally"

When the International Boundary line was being surveyed in 1857-1861, the major portion of the large Indian band then living in this area moved to the reservation at Colville, Washington. In 1956 Canada declared the Sinixt officially extinct, a decision that left those Sinixt members living on the Colville Reservation or scattered among other ethnic groups in BC without recognition under the Indian Act.

Neighbouring peoples to the Sinixt did not bury their dead in a sitting position, making burial grounds an accurate determinator of territorial boundaries. For the Sinixt, who are asking for recognition and reinstatement, such evidence is vital. Traditional Sinixt burial grounds were located alongside lakes and rivers and it is a great loss that so many have been destroyed by hydro development.

In 1902, Canada established a small reserve near Burton for a group of aboriginals which authorities called "the Arrow Lakes Indian Band". Six families numbering 22 people in all were assigned to the reserve. But living on the reserve was incompatible with the traditional livelihood of the local aboriginals, who called themselves sngaytskstx, or Sinixt.

For thousands of years prior, the Sinixt had traversed the waters of the Columbia basin, fishing, hunting and gathering over seasonal rounds so as to avoid depleting the natural resources of any one site. The Sinixt could not sustain themselves by remaining sedentary. Living on the Burton reserve was not a viable option.

So when Canada conducted its roll-call of the Arrow Lakes Indian Band, they found that by the 1920s, only six people lived on the reserve, the last of which whom died in 1953. Notwithstanding that there were more than 250 Sinixt in Washington State at the time, the Canadian government declared in 1956 that the Arrow Lakes Indian Band ceased to exist as a band for the purposes of the *Indian Act*.

As a result of this declaration of extinction, many Sinixt remain disenfranchised from their statutory rights under the *Indian Act*, including the right to enter and remain in Canada.

But the Canadian government has explicitly acknowledged\_that the cessation of the Arrow Lakes Indian Band for the purpose of the *Indian Act* does not mean that the Sinixt ceased to exist as a tribal group. Further, with the enactment of the *Constitution Act* of 1982, Canada recognized and affirmed "aboriginal rights" which far exceed those rights set out in the *Indian Act*.

While the relevance of the extinction is limited to the *Indian Act*, it is the *Constitution Act*, not the *Indian Act*, on which the Sinixt rely in asserting;

- (1) their right to enter and remain in Canada;
- (2) their aboriginal title claim to their indigenous territory; and
- (3) their <u>right to be consulted</u> regarding the Province's land and water decisions within their claimed territory, including:
  - a) the approval of the Glacier-Howser independent power project;
  - b) the approval of slaughterhouse facilities;
  - c) the development of commercial forestry infrastructure;
  - d) commercial harvesting of timber;
  - e) the damming of waterways for hydroelectricity or other reasons;
  - f) tourism development;
  - g) maters affecting water quality;
  - h) developments in caribou and/or wildlife habitat;
  - i) transfer of property previously held by Pope & Talbot;
  - *j) mining* activity;
  - *k*) the development of mining infrastructure;
  - *I)* resource and land use management decisions; and
  - m) the issuance of water diversion licences.



From the headwaters of the Columbia River north of Nakusp, to Kaslo in the West, Revelstoke in the East, and down into what is now known as Washington State, the Sinixt people lived in harmony with this land.



Date: April 26, 2010 File:

Ms. Marilyn James Appointed Spokesperson The Sinixt Nation Society, RR1 G-16 C-2 Winlaw, British Columbia Canada V0G 2J0

Dear Ms. James

RE: Kootenay River Crossing (Shoreacres) Upgrade

Further to our recent telephone conversation I am pleased to provide you with some information about the proposed Kootenay River Crossing (Shoreacres) Upgrade project.

Terasen Gas is planning decommissioning the existing pipeline at Terasen's Kootenay River aerial crossing near the community of Shoreacres and replacing it with approximately 880 m of new NPS 6 transmission pressure pipe installed using Horizontal Directional Drill technology. This project will address two primary concerns; the deteriorating condition of the crossing pipe and structure and slope stability concerns at the east terminus of the crossing. The existing crossing is nearing the end of its useful life and recent inspections have identified the need for significant refurbishment if it is to remain in service. The east end of the crossing is located on a steep slope and inspections have regularly identified surface sloughing as a concern.

The new crossing begins on Terasen owned land near the west end of the existing crossing and will rejoin the existing right-of-way approximately 650 m north of the east terminus of the aerial crossing, thereby avoiding the area of slope instability at the east terminus. The new alignment will require approximately 475 m of new right-of-way. The installation of the new crossing and the decommissioning and removal of the existing crossing pipe and structure is being planned to occur in 2011.

Temporary working space may be required at certain locations during the Horizontal Directional Drill pipe string pull back and other installation staging. These working spaces will be included while securing right-of-way from Crown Land. A narrow strip of Crown Land will be needed for right-of-way for the new Horizontal Directional Drill alignment.

All required environmental permits and approvals for the project will be identified and applied for during the planning phase of the project. Agency notifications, permits and approvals are anticipated under, but not limited to, the Fisheries Act, Species at Risk Act, Navigable Waters Protection Act, Water Act, Forest and Range Practices Act, Heritage Conservation Act and Land Act. Terasen requires an approval from the British Columbia Oil and Gas Commission (OGC) to support this project as well as approval of a Certificate of Public Convenience and Necessity from the British Columbia Utilities Commission.

I look forward to working with you on the project. I will be your main contact for the planning and permitting stages of this project and I can be reached at my office at: 604-592-7686 or on my cell phone at: 604-785-8947. I am also always available to discuss the project in person.

Respectfully;

Bruce Falstead Aboriginal Relations Manager Terasen Gas Inc.

Attachment: Site Map

cc:

David M. Aaron, Barrister & Solicitor Neil Bolger, Terasen Gas Oil and Gas Commission



#### First Nations Consultation Contact Log

|                           | Terasen         | Contact Information (i.e.     |                   |                                                                                                  |                         |
|---------------------------|-----------------|-------------------------------|-------------------|--------------------------------------------------------------------------------------------------|-------------------------|
| Agency/Party              | Representative  | phone, address, etc)          | Date of Contact   | Summary of Party's Response to Contact                                                           | Email                   |
| Ktunaxa Nation Council    |                 |                               |                   |                                                                                                  |                         |
|                           |                 |                               |                   | Left and phone message and followed up with an email message regarding the Kootenay River        |                         |
|                           |                 |                               |                   | Crossing (Shoreacres) asking if Ray would like a paper copy of the CPCN or would he perfer to    |                         |
| Ktunaxa Nation Council    | B. Falstead     | Ray Warden                    | June 22 2010      | review it online.                                                                                | rwarden@ktunaxa.org     |
|                           |                 |                               |                   | Mailed a registered letter with two maps attached RE: Kootenay River Crossing (Shoreacres)       |                         |
| Ktunaxa Nation Council    | B. Falstead     | Ray Warden                    | February 19, 2010 | Upgrade to Ray Warden's attention outlining the project.                                         | rwarden@ktunaxa.org     |
|                           |                 |                               |                   | Day Worden called that any an irranmental studies he abared with him. Despended in small to      |                         |
|                           |                 |                               |                   | Ray Warden's question regarding the time a more detailed report and field reconnaissance will    |                         |
| Ktunaxa Nation Council    | B Falstead      | Ray Warden                    | February 10, 2010 | be available. It will be done on the selected option and will be available in April 2010         | rwarden@ktunaxa.org     |
|                           | Britaloloda     |                               |                   | Email sent regarding the project. Ray is responsible for Ktunaxa referrals. Bruce Falstead has a |                         |
|                           |                 |                               |                   | copy of the follow up email that was sent to Ray. On the same day, per Ray's request, a          |                         |
| Ktunaxa Nation Council    | R.Sulentich     | Ray Warden                    | January 25, 2010  | preliminary environmental screening report was provided.                                         | rwarden@ktunaxa.org     |
|                           |                 |                               |                   | Follow up email request from Norm Fraser to start discussion regarding the Shoreacres project    |                         |
|                           |                 |                               |                   | business opportunities well in advance to set up for success. Norm is the Business Manager for   |                         |
| Ktunaxa Nation Council    | R.Sulentich     | Norm Fraser                   | November 5, 2009  | Nupqu Development Corporation the Ktunaxa Nation's business arm.                                 | nfraser@ktunaxa.org     |
|                           |                 |                               |                   | Email follow up from Norm Fraser after a face to face meeting in Kelowna confirming the Nupqu    |                         |
|                           | D. O. J. Market |                               | 0                 | Development Corporation's (Ktunaxa Nation Council) interest contracting for the Shoreacres       |                         |
| Ktunaxa Nation Council    | R.Sulentich     | Norm Fraser                   | October 16, 2009  | Project.                                                                                         | ntraser@ktunaxa.org     |
| Ktunaxa Nation Council    | R Sulentich     | Norm Fraser                   | October 14, 2009  | Nation development arm. Nunqu Development Corporation                                            | nfraser@ktunaxa.org     |
|                           | Tt.Oulondon     |                               | 000000114,2000    | Email follow up from Norm Eraser after a face to face meeting in Vancouver confirming the        | initiasci e itanaxa.org |
|                           |                 |                               |                   | Nuppu Development Corporation's (Ktunaxa Nation Council) interest in contracting for the         |                         |
| Ktunaxa Nation Council    | R.Sulentich     | Norm Fraser                   | August 17, 2009   | Shoreacres project.                                                                              | nfraser@ktunaxa.org     |
|                           |                 |                               |                   | Face to face meeting with Norm Fraser in Vancouver about the Nupqu Development                   |                         |
|                           |                 |                               |                   | Corporation's (Ktunaxa Nation Council) interest in contracting for the Brilliant Project and the |                         |
| Ktunaxa Nation Council    | R.Sulentich     | Norm Fraser                   | August 14, 2009   | Shoreacres Project.                                                                              | nfraser@ktunaxa.org     |
|                           |                 |                               |                   | Phone and email message to Ktunaxa Nation Council requesting a meeting to review their           |                         |
| Ktunaxa Nation Council    | B. Falstead     | Ray Warden                    | March 17, 2008    | Protocols regarding Terasen planned projects that may require consultation.                      | rwarden@ktunaxa.org     |
|                           |                 |                               |                   |                                                                                                  |                         |
| Okanagan Nation Alliance  |                 |                               |                   | Construction in the share. Discussed the ONAIs noticipation in the uppersist                     |                         |
|                           |                 | lav Johnson - Responsible for |                   | Spoke with Jay on the phone. Discussed the ONA's participation in the upcoming                   |                         |
| Okanagan Nation Alliance  | B Falstead      | Industry Referrals            | June 22 2010      | ONA members involved Jay would like a paper copy of the CPCN                                     | iohnson-iav@shaw.ca     |
| Chanagan Nation / Illance | D. Taistead     |                               | 00110 22 2010     |                                                                                                  | Johnson Jay @ Shaw.ou   |
|                           |                 |                               |                   | Spoke with Jay on the phone. Discussed the ONA proposed budget for engagement on the             |                         |
|                           |                 |                               |                   | project. Discussed an overall engagement agreement with Terasen Gas and FortisBC. Jay            |                         |
|                           |                 |                               |                   | explained that the ONA have internal protocols regarding engagement around a member First        |                         |
|                           |                 |                               |                   | Nation's reserve. The Kootenay River Crossing (Shoreacres) Upgrade is not close to any ONA       |                         |
|                           |                 |                               |                   | members reserve. ONA wish to look over the existing archaeological work. Following phone         |                         |
|                           |                 |                               |                   | call, Jay provided via email a copy of ONA's newly developed decision making process, stating    |                         |
|                           |                 | lav Johnson - Rosponsible for |                   | that the ONA does not recognize archaeological work conducted within ONA territory that does     |                         |
| Okanagan Nation Alliance  | B Falstead      | Industry Referrals            | May 12 2010       | Isatisfy ONA decision making process                                                             | iohnson-iav@shaw.ca     |
|                           | D. 1 0101000    |                               | 101dy 12 2010     |                                                                                                  | Jonnoon Juy Conum.od    |
|                           |                 | Jay Johnson - Responsible for |                   | Provided copies by email of Feb 19 2010 letter and map as well as Shoreacres Archeological       |                         |
| Okanagan Nation Alliance  | B. Falstead     | Industry Referrals            | April 19 2010     | Report July 2009 to identify and assess archaeological resource potential or sensitivity.        | johnson-jay@shaw.ca     |
#### First Nations Consultation Contact Log

|                           | Terasen        | Contact Information (i.e.     |                   |                                                                                                   |                     |
|---------------------------|----------------|-------------------------------|-------------------|---------------------------------------------------------------------------------------------------|---------------------|
| Agency/Party              | Representative | phone, address, etc)          | Date of Contact   | Summary of Party's Response to Contact                                                            | Email               |
|                           |                |                               |                   |                                                                                                   |                     |
|                           |                | Jay Johnson - Responsible for |                   | Left Jay with phone message and followed up with an email requesting that he provide the          |                     |
| Okanagan Nation Alliance  | B. Falstead    | Industry Referrals            | April 19 2010     | proposal for funding to proceed with consultation that we spoke about on the 12th of April.       | johnson-jay@shaw.ca |
|                           |                |                               |                   | Face to face meeting with Jay Johnson at 1111 West Georgia Vancouver (meeting notes). Main        |                     |
|                           |                |                               |                   | topics: (1) resending the Feb. 19 information and preliminary field reconnaissance; (2) ONA does  | 3                   |
|                           |                | Jay Johnson - Responsible for |                   | not recognize archaeology studies unless it is involved; (3) ONA has a new decision making        |                     |
| Okanagan Nation Alliance  | B. Falstead    | Industry Referrals            | April 12 2010     | process.                                                                                          | johnson-jay@shaw.ca |
|                           |                | Jay Johnson - Responsible for |                   | Talked with Jay Johnson on the phone about Shoreacres and ONA process. Scheduled a                |                     |
| Okanagan Nation Alliance  | B. Falstead    | Industry Referrals            | March 29, 2010    | meeting in West bank for April 12th 2010.                                                         | johnson-jay@shaw.ca |
|                           |                |                               |                   | Mailed a registered letter (Okanagan Nation Alliance letter 2010-02-19) with two maps attached    |                     |
|                           |                | Jay Johnson - Responsible for |                   | RE: Kootenay River Crossing (Shoreacres) Upgrade to Jay Johnson's attention outlining the         |                     |
| Okanagan Nation Alliance  | B. Falstead    | Industry Referrals            | February 19, 2010 | project.                                                                                          | johnson-jay@shaw.ca |
|                           |                |                               |                   |                                                                                                   |                     |
|                           |                | Jay Johnson - Responsible for |                   | Phone call followed up by an email regarding the project. Jay is responsible for Okanagan         |                     |
| Okanagan Nation Alliance  | R.Sulentich    | Industry Referrals            | January 25, 2010  | Nation Alliance referrals. Bruce Falstead has a copy of the follow up email that was sent to Jay. | johnson-jay@shaw.ca |
|                           |                |                               |                   |                                                                                                   |                     |
| The Sinixt Nation Society |                |                               |                   |                                                                                                   |                     |
|                           |                | Ms. Marilyn James-Appointed   |                   |                                                                                                   |                     |
|                           |                | Spokesperson                  |                   | Received an email from Marilyn regarding potential contact for archeological field work, Taress   |                     |
| The Sinixt Nation Society | B. Falstead    | The Sinixt Nation Society     | June 22 2010      | Alexis. Marilyn also requested a copy of the study.                                               | mjames@selkirk.ca   |
|                           |                | Ms. Marilyn James-Appointed   |                   | Responded to Marilyn's June 1, 2010 email questions concerning alignment, archeological           |                     |
|                           |                | Spokesperson                  |                   | overview assessment, and employment opportunities. Also requested budget proposal for Sinixi      | i                   |
| The Sinixt Nation Society | B. Falstead    | The Sinixt Nation Society     | June 8 2010       | consultation activities.                                                                          | mjames@selkirk.ca   |
|                           |                | Ms. Marilyn James-Appointed   |                   |                                                                                                   |                     |
|                           |                | Spokesperson                  |                   | Received an email from Marilyn with questions regarding alignment, archeology and                 |                     |
| The Sinixt Nation Society | B. Falstead    | The Sinixt Nation Society     | June 1 2010       | employment.                                                                                       | mjames@selkirk.ca   |
|                           |                | Ms. Marilyn James-Appointed   |                   |                                                                                                   |                     |
|                           |                | Spokesperson                  |                   | Spoke with Marilyn James on the telephone to confirm that she had received the April 24, 2010     |                     |
| The Sinixt Nation Society | B. Falstead    | The Sinixt Nation Society     | May 31 2010       | information package. She confirmed receipt.                                                       | mjames@selkirk.ca   |
|                           |                | Ms. Marilyn James-Appointed   |                   |                                                                                                   |                     |
|                           |                | Spokesperson                  |                   | Mailed a registered letter with map attached RE: Kootenay River Crossing (Shoreacres)             |                     |
| The Sinixt Nation Society | B. Falstead    | The Sinixt Nation Society     | April 26 2010     | Upgrade to Marilyn James and David Aaron attention outlining the project.                         | mjames@selkirk.ca   |
|                           |                | Ms. Marilyn James-Appointed   |                   |                                                                                                   |                     |
|                           |                | Spokesperson                  |                   | Spoke with Marilyn James on the telephone to confirm her position and address, she advised to     |                     |
| The Sinixt Nation Society | B. Falstead    | The Sinixt Nation Society     | April 24 2010     | send copies of all information to the Sinixt Nation Society's lawyer David M. Aaron.              | mjames@selkirk.ca   |

# Appendix Q OGC PIPELINE MANUAL FIRST NATIONS CONSULTATION SECTION

# Pipelines and Facilities Manual

Province of British Columbia http://www.ogc.gov.bc.ca

> Version 8.5 Sept 2009



## OIL & GAS COMMISSION

### TABLE OF CONTENTS

| 1.0 | PREFAC         | PREFACE 1           |                                                                                                                                                          |        |
|-----|----------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     | 1.1            | Purpose             |                                                                                                                                                          | L      |
| 2.0 | .0 OGC PROFILE |                     |                                                                                                                                                          | 2      |
|     | 2.1            | Role of             | OGC                                                                                                                                                      | 2      |
| 3.0 | OVERV          | IEW WO              | RKFLOW                                                                                                                                                   | 3      |
|     | 3.1            | Applicat<br>Approva | tion Review Process (Initial Surface Land and Engineering/Technical Review and<br>Al Process for Pipelines and Facilities)                               | 3      |
|     | 3.2            | Post-Ap<br>review   | proval (An overview of the main engineering and project review submission and steps leading to issuance of long term tenure for pipeline and facilities) | 1      |
| 4.0 | FORMS          | REQUIR              | ED                                                                                                                                                       | 5      |
|     | 4.1            | Forms I             | 1atrix                                                                                                                                                   | 5      |
|     | 4.2            | Notice (            | of Intent Matrix - Pipelines                                                                                                                             | 7      |
|     | 13             | Notice              | of Intent Matrix - Facility                                                                                                                              | 8      |
|     | ч.J            |                     |                                                                                                                                                          | 0      |
| 5.0 | PRE-AF         | PLICATI             |                                                                                                                                                          | ~      |
|     | 5.1            | Compa               | nies New to British Columbia                                                                                                                             | J<br>~ |
|     |                | 5.1.1               | Certificate Pursuant to Section 10 of the Pipeline Act                                                                                                   | J      |
| 6.0 | APPLIC         | ATION F             | ORM – PIPELINES AND FACILITIES 1.                                                                                                                        | 2      |
|     | 6.1            | Introdu             | ction1                                                                                                                                                   | 2      |
|     | 6.2            | Pipeline            | Application Form Procedure1                                                                                                                              | 2      |
|     |                | 6.2.1               | Overview of the Pipeline Application Form                                                                                                                | 2      |
|     |                | 6.2.2               | OGC Use Only 1.                                                                                                                                          | 3      |
|     |                | 6.2.3               | Administration 14                                                                                                                                        | 4      |
|     |                | 6.2.4               | Purpose of Application 1                                                                                                                                 | 4      |
|     |                | 6.2.5               | Pipeline Specifications 1                                                                                                                                | 5      |
|     |                | 6.2.6               | Engineer's Details 2                                                                                                                                     | 1      |
|     |                | 6.2.7               | Spatial Data and Construction Plan2                                                                                                                      | 2      |
|     |                | 6.2.8               | Land Status and Land Use Planning 2                                                                                                                      | 3      |
|     |                | 6.2.9               | General Development Permit 2                                                                                                                             | 5      |
|     |                | 6.2.10              | Application Category (Routine - Non-Routine) 2                                                                                                           | 6      |
|     |                | 6.2.11              | Forestry 2                                                                                                                                               | 9      |
|     |                | 6.2.12              | Archaeology 3                                                                                                                                            | 1      |
|     |                | 6.2.13              | Public Engagement 3                                                                                                                                      | 2      |
|     |                | 6.2.14              | First Nations Consultation and Aboriginal Community Notification                                                                                         | 3      |
|     |                | 6.2.15              | First Nations Notification (formerly called Pre-Assessments)                                                                                             | 4      |
|     |                | 6.2.16              | Additional Attachments 3                                                                                                                                 | 5      |
|     |                | 6.2.17              | Routine Stream Crossings 3                                                                                                                               | 5      |
|     |                | 6.2.18              | Variance Request for Non-Routine Stream Crossings 3                                                                                                      | 6      |
|     |                | 6.2.19              | OGC Use Only 3                                                                                                                                           | 6      |

i

|      | 6.3    | Facility  | Application Form Procedure                                              | 37 |
|------|--------|-----------|-------------------------------------------------------------------------|----|
|      |        | 6.3.1     | General                                                                 | 37 |
|      |        | 6.3.2     | Facility Specifications                                                 | 37 |
|      | 6.4    | Facilitie | s and Linkages                                                          | 40 |
|      |        | 6.4.1     | The BC-20, Application for Production Facility                          | 40 |
|      |        | 6.4.2     | The BC-21 Application For Well or Facility To Facility Linkage          | 41 |
|      |        | 6.4.3     | Construction or Modification of Facilities                              | 41 |
| 7.0  | APPLIC | ATION F   | REVISIONS OR APPROVAL AMENDMENTS                                        | 43 |
|      | 7.1    | Revisio   | ns                                                                      | 43 |
|      |        | 7.1.1     | Revision or Re-route using New Crown Land and/or Ancillary Sites        | 43 |
|      |        | 7.1.2     | Revision to Alter Segments with No Change to Area or Land Being Used    | 43 |
|      |        | 7.1.3     | Revision or Amendment to Delete Segments or Ancillary Sites             | 43 |
|      |        | 7.1.4     | Revision to Add Segments or Ancillary Sites using New Crown Land        | 44 |
|      |        | 7.1.5     | Revision to Add Segments within the Proposed Crown Land Area Identified | 44 |
|      |        | 7.1.6     | Amendment to Re-route using New Crown Land and/or Ancillary Sites       | 44 |
|      |        | 7.1.7     | Amendment to Alter Segments with no Change to Area of Land being Used   | 44 |
|      |        | 7.1.8     | Amendment to Delete Segments with Ancillary Sites                       | 45 |
|      |        | 7.1.9     | Amendment to Add Segments or Ancillary Sites using New Crown Land       | 45 |
| 8.0  | REQUE  | ST FOR    | PIPELINE FIELD CHANGE                                                   | 46 |
|      | 8.1    | Pipeline  | e Field Change                                                          | 46 |
| 9.0  | NOTIC  | E OF INT  | ENT                                                                     | 48 |
|      | 9.1    | Purpos    | e                                                                       | 48 |
|      | 9.2    | Pipeline  | e Notice of Intent Matrix                                               | 49 |
|      | 9.3    | Pipeline  | e Notice of Intent – Form                                               | 50 |
|      |        | 9.3.1     | Increase Maximum Operating Pressure (MOP)                               | 51 |
|      |        | 9.3.2     | Increase CSA Z662 Class Area                                            | 51 |
|      |        | 9.3.3     | Cancellation of Project or Pipe Segment(s)                              | 51 |
|      |        | 9.3.4     | Install Mid-Pipeline Riser                                              | 52 |
|      |        | 9.3.5     | Modify Sub-Surface Pipe                                                 | 52 |
|      |        | 9.3.6     | Repair or Replace Pipeline                                              | 52 |
|      |        | 9.3.7     | Change of Service (BC 20 attached)                                      | 53 |
|      |        | 9.3.8     | Abandon a Pipeline                                                      | 54 |
|      |        | 9.3.9     | Peactivate a Pipeline (BC 20 and BC 21 attached)                        | 55 |
|      |        | 9.5.10    | Flow Reversal of Pineline (BC 20 and BC 21 attached)                    | 55 |
|      |        | 9.3.12    | Modify Existing or Updating Data                                        | 56 |
|      | 9.4    | Facility  | Notice of Intent Matrix                                                 | 57 |
|      | 9.5    | Facility  | Notice of Intent - Form                                                 | 57 |
| 10.0 | PRE-CO | ONSTRU    | CTION                                                                   | 62 |
|      | 10.1   | Notice    | of Construction Start                                                   | 62 |
|      |        | 10 1 1    | Purpose                                                                 | 62 |
|      |        | 10.1.2    | Procedure                                                               | 62 |
| 11.0 | DURIN  |           | TRUCTION                                                                | 64 |
| 11.0 | CONTR  |           |                                                                         |    |

ii

|      | 11.1   | Notice of Pressure Test6                                                             | 54       |
|------|--------|--------------------------------------------------------------------------------------|----------|
|      |        | 11.1.1 Purpose6                                                                      | 54       |
|      |        | 11.1.2 Procedure                                                                     | 54<br>   |
|      | 11.2   | Notice of Leave to Open                                                              | 56       |
|      |        | 11.2.1 Purpose                                                                       | 56       |
|      |        | 11.2.2 Procedure                                                                     | 20       |
| 12.0 | POST-0 | CONSTRUCTION                                                                         | -0       |
|      | 12.1   | Pipeline/Facility As-Cleared Plan Submission                                         | /0       |
|      |        | 12.1.1 Purpose                                                                       | 7U<br>71 |
|      | 10.0   | 12.1.2 Procedure                                                                     | 72       |
|      | 12.2   | 12.2.1 Displines                                                                     | 72       |
|      |        | 12.2.1 Pipelines                                                                     | 73       |
|      | 123    | Renewing an Expired Cutting Permit                                                   | 73       |
|      | 12.5   | As Built Form                                                                        | 73       |
|      | 12.4   | AS-Built Form                                                                        | 73       |
|      |        | 12.4.1 Purpose                                                                       | 74       |
|      | 125    | Issuance of Certificate of Operations (Pipelines only)                               | 31       |
|      | 12.5   | 12.5.1 Purpose                                                                       | 31       |
| 13.0 | SURVE  | YS AND TENURES                                                                       | 32       |
|      | 13.1   | Legal Statutory Right of Way Survey Requirements                                     | 32       |
|      | 1011   | 13.1.1 Survey Requirements for Statutory Right of Way                                | 32       |
|      |        | 13.1.2 Statutory Right of Way Document                                               | 32       |
|      |        | 13.1.3 Pipelines Statutory Right of Way Fees                                         | 32       |
|      |        | 13.1.4 Facility Statutory Right of Way Fees                                          | 33       |
|      |        | 13.1.5 Requirements for Facility Lease Tenures (Marketing/Refining Facilities)       | 33       |
| 14.0 | TRANS  | FERS OF OWNERSHIP                                                                    | 34       |
|      | 14.1   | Transfer of Ownership                                                                | 34       |
|      |        | 14.1.1 Legislation: Pipeline Act (Section 32)                                        | 34       |
|      |        | 14.1.2 Transfer as a Result of an Acquisition:                                       | 34<br>85 |
|      |        | 14.1.3 Transfer as a result of an Amalgamation of a Name Change.                     | 85       |
| 15.0 | GUIDE  | I I I I I I I I I I I I I I I I I I I                                                | 87       |
| 10.0 | 15 1   | Purpose                                                                              | 87       |
| 16.0 | DOWN   | STRFAM - OVERVIEW WORKFLOW                                                           | 89       |
| 2010 | 16.1   | Approval Flow                                                                        | 89       |
|      | 16.2   | Water Act Application Flow                                                           | 90       |
| 17.0 | DOWN   | STREAM - NOTICE OF INTENT                                                            | 91       |
| -    | 17.1   | Purpose                                                                              | 91       |
|      |        | 17.1.1 Procedure                                                                     | 91       |
|      |        | 17.1.2 Section 8 Water Act (Short term use of water) Application                     | 91       |
|      |        | 17.1.3 Section 9 Water Act (Changes in and about a stream) Application for Pipelines | 91       |
|      |        | Disaling and Easilities Manual - Teductory V.O.2                                     |          |

Pipelines and Facilities Manual – Industry V 8.3

iii

|      | 17.2  | Notice of Intent Matrix - Downstream                                    | . 92 |
|------|-------|-------------------------------------------------------------------------|------|
|      | 17.3  | Pipeline Notice of Intent - Downstream                                  | . 93 |
|      |       | 17.3.1 Procedure                                                        | . 93 |
|      | 17.4  | Instructions Based on Activity in Notice of Intent Matrix for Pipelines | . 95 |
|      |       | 17.4.1 Decrease Maximum Operating Pressure (MOP) (700 kPa and Lower)    | . 95 |
|      |       | 17.4.2 Increase Maximum Operating Pressure (MOP)                        | . 95 |
|      |       | 17.4.3 Increase CSA Z662 Class Location                                 | . 96 |
|      |       | 17.4.4 Cancellation of Project or Segment(s)                            | . 96 |
|      |       | 17.4.5 Install Mid-Pipeline Riser                                       | 97   |
|      |       | 17.4.6 Farm Taps                                                        | 97   |
|      |       | 17.4.7 Modify Sub-Surface Pipe                                          | 97   |
|      |       | 17.4.8 Repair or Replace Pipeline                                       | 90   |
|      |       | 17.4.9 Change of Service                                                | 90   |
|      |       | 17.4.10 Abandon a Pipeline                                              | 100  |
|      |       | 17.4.11 Deactivate a Pipeline                                           | 100  |
|      |       | 17.4.12 Reactivate a Pipeline                                           | 100  |
|      |       | 17.4.14 Modify Existing or Updating Data                                | 101  |
|      | 175   | Facility Notice of Intent - Downstream                                  | 102  |
|      | 17.0  |                                                                         | 102  |
|      |       | 17.5.2 Procedure                                                        | 102  |
|      |       | 17.5.3 Fax Cover Sheet for Notice of Intent                             | 105  |
| 18.0 | DOWNS | STREAM - PRE-CONSTRUCTION                                               | 106  |
|      | 18.1  | Notice of Construction Start - Downstream                               | 106  |
|      |       | 18.1.1 Purpose                                                          | 106  |
|      |       | 18.1.2 Procedure                                                        | 106  |
|      |       | 18.1.3 Fax Cover Sheet for Notice of Construction Start                 | 107  |
| 19.0 | DOWNS | STREAM - DURING CONSTRUCTION                                            | 108  |
|      | 19.1  | Notice of Pressure Test – Downstream                                    | 108  |
|      |       | 19.1.1 Purpose                                                          | 108  |
|      |       | 19.1.2 Procedure                                                        | 108  |
|      |       | 19.1.3 Fax Cover Sheet for Notice of Pressure Test                      | 109  |
|      | 19.2  | Notice of Leave to Open - Downstream                                    | 110  |
|      |       | 19.2.1 Purpose                                                          | 110  |
|      |       | 19.2.2 Procedure                                                        | 110  |
|      |       | 19.2.3 Fax Cover Sheet for Notice of Leave to Open                      | 112  |
| 20.0 | DOWN  | STREAM - POST-CONSTRUCTION                                              | 113  |
|      | 20.1  | As-Cleared Plan                                                         | 113  |
|      | 20.2  | Issuance of License of Occupation                                       | 113  |
|      | 20.3  | As-Built Form - Downstream                                              | 113  |
|      |       | 20.3.1 Purpose                                                          | 113  |
|      |       | 20.3.2 Procedure                                                        | 114  |
|      | 20.4  | Issuance of Certificate of Operations (Pipelines Only)                  | 121  |

#### Oil and Gas Commission

| 20.5        | Legal Statutory Right of Way and Lease Surveys                | 121 |
|-------------|---------------------------------------------------------------|-----|
| 20.6        | Issuance of Statutory Right of Way                            | 121 |
| 20.7        | Legal District Lot Survey Plans (Facilities Information Only) | 121 |
| APPENDIX A: | LINKS                                                         | 122 |
| APPENDIX B: | CONSTRUCTION PLANS                                            | 126 |
|             | Instructions                                                  | 126 |
|             | Example of Construction Plan Legend                           | 128 |
| APPENDIX C: | ELECTRONIC SUBMISSION GUIDELINES                              | 129 |

NOTE: At this time a Global Glossary is being created and will be available on the OGC website for use in 2007. Please refer to this for the terms and acronyms used in this manual.

#### 6.2.14 First Nations Consultation and Aboriginal Community Notification

| FIRST NATIONS CONSULTATION / ABORIGINAL COMMUNITY NOTICE |                       |                         |                                                                              |  |  |
|----------------------------------------------------------|-----------------------|-------------------------|------------------------------------------------------------------------------|--|--|
| Ensure the following are attac                           | ched to application f | or First Nations consul | tation purposes:                                                             |  |  |
| Aboriginal Community                                     | Consultation          |                         | Attachments                                                                  |  |  |
| Notice                                                   |                       | MLIB                    | Cover letter (2 copies for EACH Consultation and notification area affected) |  |  |
|                                                          | DENE THA              | PRFN                    | Application Form                                                             |  |  |
|                                                          |                       | SFN                     | ☐ 1:20,000 BCGS sketch; 1:50,000 & 1:250,000                                 |  |  |
|                                                          |                       |                         | Archaeological Assessment Information Form                                   |  |  |
| C Other                                                  |                       | Other                   |                                                                              |  |  |
|                                                          |                       |                         |                                                                              |  |  |

The OGC is responsible for conducting consultations with First Nations communities in relation to potential adverse impacts of statutory decisions on constitutionally recognized rights. In order to effectively carry out this responsibility, the OGC has entered into consultation agreements with Treaty 8 First Nations. These agreements outline how the OGC consults with Treaty 8 First Nations. These First Nation communities review applications submitted by industry; and, are provided the opportunity to identify any potential adverse impacts on treaty rights and make suggestions for minimizing those impacts.

Note: New Consultation Process Agreements (CPAs) have been negotiated with Doig River, Prophet River, Fort Nelson, Halfway River, Saulteau, and West Moberly First Nations. These CPAs will be implemented over the next few months through direction from the CPA Implementation Committee. Once the implementation details are known, this section of the manual will be updated

The OGC also provides copies of applications to a number of aboriginal communities in Northeast BC.

For applications outside Northeast BC, contact OGC's Aboriginal Relations staff.

#### **Company Responsibilities**

General guidance for engaging First Nation people and communities is provided in OGC's A Guide to Public Engagement and Appropriate Dispute Resolution Link to Public Engagement Guideline

To assist OGC in fulfilling their obligation, companies are requested to provide consultation notification material with each application for every First Nation community that may potentially be impacted by the pipeline or facility. Maps are available for review at the OGC.

First Nations Consultation and Notification Package - the required consultation attachments are outlined under the First Nations Consultation Section of the Pipeline Application Form. (Link to OGC Forms)

**Pre-application** – prior to submitting an application to the OGC, companies are encouraged to initiate and build relationships with First Nations communities directly, discuss intended development plans, and begin to understand the people, issues, and concerns.

Further documentation demonstrating that an applicant has followed industry Best Management Practices in preparing the application and responding to FN concerns will assist in application review by the OGC. Refer to industry standards. (Canadian Association of Petroleum Producers (CAPP) Home)

The documented information should include the following:

- Description of what information exchange has occurred
- Identification of any potential adverse impacts
- What, if any, mitigation of those potential adverse impacts has been incorporated into the application?

#### **OGC Responsibilities**

OGC Aboriginal Relations staff conducts consultation/notification and liaison activities with First Nations, organize meetings between oil and gas companies and First Nations communities, and provide recommendations to support program managers in making decisions about oil and gas development applications. Program managers serve as statutory decision makers and have overall responsibility to determine if there has been adequate and meaningful consultation and mitigation of potential adverse impacts and whether sufficient information is available to make those determinations. Each First Nations community has a designated contact person within the OGC so that the community can work with someone who is familiar with its particular interests and issues.

#### **OGC Process**

OGC consults through the process and timelines established in agreements. (Consultation Agreements)

Consultation/notification packages are delivered to the First Nations communities based on an established delivery schedule. If concerns are identified in First Nations responses, the OGC will, where appropriate, facilitate meetings with the community (involving the oil and gas company as necessary) to discuss their concerns and proposed mitigation measures. If the First Nations communities do not respond within the specified timeframes, the OGC will advise the community as to when a decision will be made, and will then proceed with the application review

The OGC also sends packages for Notification only to aboriginal communities when applications occur on areas where they have identified having interests on the land.

Abbreviations within this section of the form are as follows:

| Notification Only C                                                                            | communities/Bands                                           | Consultation Communities/Bands           |                                                                                                                                              |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| KLCN Kelly Lake C<br>KLFN Kelly Lake F<br>KLMSS Kelly Lake M<br>FLFN Society<br>Fort Liard Fin | ree Nation<br>irst Nation<br>létis Settlement<br>rst Nation | BRFN<br>DENE THA<br>DRFN<br>FNFN<br>HRFN | Blueberry River First Nations<br>Dene Tha' First Nation<br>Doig River First Nation<br>Fort Nelson First Nation<br>Halfway River First Nation |  |
|                                                                                                |                                                             | MLIB<br>PRFN<br>SFN<br>WMFN              | McLeod Lake Indian Band<br>Prophet River First Nation<br>Saulteau First Nations<br>West Moberly First Nations                                |  |

#### 6.2.15 First Nations Notification (formerly called Pre-Assessments)

Notification (formerly called pre-assessment) of First Nations is in the main consultation method in situations where the proposed project changes are minimal and may not require full First Nations consultation. Generally, this would apply for minor revisions or amendments. In these cases, companies are to submit a First Nations Notification Form (formerly called pre-assessment) for each community. The OGC will review this form and determine if more extensive First Nations consultation is required. If the notification method is acceptable in the circumstances, the relevant First Nations communities will be notified of the changes.

Notification form (Link to First Nations Forms)

First Nations Consultation Package - the required consultation attachments are outlined <u>above</u>.

It is recommended that companies submit full consultation and notification packages with all notification forms, in order to promote timely processing in case more extensive First Nations consultation is deemed necessary by the OGC.

Appendix R DRAFT ORDERS



SIXTH FLOOR, 900 HOWE STREET, BOX 250 VANCOUVER, B.C. V6Z 2N3 CANADA web site: http://www.bcuc.com

#### IN THE MATTER OF the Utilities Commission Act, R.S.B.C. 1996, Chapter 473

and

An Application by Terasen Gas Inc. for a Certificate of Public Convenience and Necessity for the Upgrade of Transmission Pipeline Crossing of the Kootenay River near Shoreacres

**BEFORE:** 

XXXX YY, 2010

#### ORDER

#### WHEREAS:

- A. On July 15, 2010, Terasen Gas Inc. ("TGI") applied (the "Application") to the British Columbia Utilities Commission (the "Commission"), pursuant to sections 45 and 46 of the Utilities Commission Act (the "Act"), for a Certificate of Public Convenience and Necessity ("CPCN") to install a natural gas transmission pipeline, using horizontal directional drilled ("HDD") technology, that crosses the Kootenay River near the community of Shoreacres approximately half way between Castlegar and Nelson (the "Kootenay River Crossing (Shoreacres) Upgrade Project" or the "Project"; and
- B. The HDD crossing, as proposed by TGI in the Kootenay River Crossing (Shoreacres) Upgrade Project, will be approximately 880 metres (0.5 mile) of 168 mm (6 inch) pipeline. The Project will replace the existing 219 mm (8 inch) aerial crossing; and
- C. TGI states that it considered several alternatives in the Application, one of which was the replacement of the existing aerial crossing with a new 9 km 168 mm (6 inch) transmission pressure ("TP") pipe alignment and another the replacement with a new 9 km 219 mm (8 inch) intermediate pressure ("IP") pipe alignment, together with a TP/IP station; and
- D. TGI is proposing the Kootenay River Crossing Upgrade Project as the preferred solution to address potential consequences from the slope instability at the east terminus of the existing aerial crossing and the deteriorating condition of the aerial crossing structure and pipe; and
- E. TGI proposes to start installation of the new crossing in April 2011 and to have the new crossing in-service by July 2011 with the aerial crossing removal and final site clean up as soon as practical thereafter. TGI has

BRITISH COLUMBIA UTILITIES COMMISSION

Order Number G-XX-10

> TELEPHONE: (604) 660-4700 BC TOLL FREE: 1-800-663-1385 FACSIMILE: (604) 660-1102

BRITISH COLUMBIA UTILITIES COMMISSION

ORDER NUMBER G-XX-10

2

estimated the cost of the project will be approximately \$8.3 million including Allowance for Funds Used During Construction ("AFUDC"); and

- F. TGI considers that a written hearing process is appropriate for the review of the Application and has proposed a regulatory timetable; and
- G. Concurrent with the filing of the Application, TGI provided notice of filing of the Application to registered parties in the TGI 2010-2011 Revenue Requirements Application, as well as to identified stakeholders, which were set out in Appendices O and P of the Application; and
- H. The Commission considers that establishing a written public hearing and regulatory timetable for the registration of Intervenors and for the review of the Application is necessary and in the public interest.

NOW THEREFORE the Commission orders as follows:

- 1. The Application will be examined by a Written Public Hearing process, in accordance with the Regulatory Timetable for the hearing that is established and attached as Appendix A to this Order.
- The Application, together with any supporting materials, will be made available for inspection at the TGI Office, 16705 Fraser Highway, Surrey, BC, V4N 0E8 and at the British Columbia Utilities Commission, Sixth Floor, 900 Howe Street, Vancouver, BC, V6Z 2N3, and will also be available on the TGI and Commission websites at www.terasengas.com and www.bcuc.com.
- 3. Intervenors or Interested Parties should register with the Commission, in writing or electronic submission, by Thursday, August 24, 2010. Intervenors should specifically state the nature of their interest in the Application, and identify generally the nature of the issues that they intend to pursue during the proceeding and the nature and extent of their anticipated involvement in the review process.
- 4. TGI will publish the Notice of Application and Written Public Hearing, attached as Appendix B, in the local papers in Castelgar and Nelson, as soon as it is possible to do so.

| DATED at the City of Vancouve | r, in the Province of British Columbia, this | XX | day of July 2010. |
|-------------------------------|----------------------------------------------|----|-------------------|
|-------------------------------|----------------------------------------------|----|-------------------|

BY ORDER

Original signed by:

Commissioner



APPENDIX A to Order G-XX-10 Page 1 of 1

TELEPHONE: (604) 660-4700 BC TOLL FREE: 1-800-663-1385 FACSIMILE: (604) 660-1102

SIXTH FLOOR, 900 HOWE STREET, BOX 250 VANCOUVER, BC V6Z 2N3 CANADA web site: http://www.bcuc.com

#### An Application by Terasen Gas Inc. for a Certificate of Public Convenience and Necessity for the Upgrade of Transmission Pipeline Crossing of the Kootenay River near Shoreacres

#### **REGULATORY TIMETABLE**

#### ACTION

#### DATES (2010)

| Commission Information Request No. 1                 | Tuesday, August 17     |
|------------------------------------------------------|------------------------|
| Intervenor and Interested Party Registration         | Tuesday, August 24     |
| Intervenor Information Request No. 1                 | Tuesday, August 24     |
| TGI Response to Information Requests No. 1           | Thursday, September 9  |
| Commission and Intervenor Information Requests No. 2 | Thursday, September 23 |
| TGI Response to Information Requests No. 2           | Thursday, October 7    |
| TGI Written Final Submission                         | Thursday, October 21   |
| Intervenor Written Final Submission                  | Thursday, November 4   |
| TGI Written Reply Submission                         | Thursday, November 18  |



APPENDIX B to Order No. G-XX-10 Page 1 of 3

> TELEPHONE: (604) 660-4700 BC TOLL FREE: 1-800-663-1385 FACSIMILE: (604) 660-1102

SIXTH FLOOR, 900 HOWE STREET, BOX 250 VANCOUVER, B.C. V6Z 2N3 CANADA web site: http://www.bcuc.com

> An Application by Terasen Gas Inc. ("Terasen Gas", "TGI") for a Certificate of Public Convenience and Necessity for the Upgrade of Transmission Pipeline Crossing of the Kootenay River near Shoreacres

#### NOTICE OF APPLICATION AND WRITTEN PUBLIC HEARING

#### THE APPLICATION

On July 15, 2010 Terasen Gas applied to the British Columbia Utilities Commission (the "Commission") for a Certificate of Public Convenience and Necessity (the "Application") for the Kootenay River Crossing (Shoreacres) Upgrade Project. Terasen Gas requests approval for installation of a natural gas transmission pipeline crossing of the Kootenay River near Shoreacres, using the Horizontal Directional Drill ("HDD") construction method to tunnel under the river bed at a depth where the river is unaffected. The crossing will replace the existing aerial crossing that Terasen Gas considers to be no longer reliable due to potential consequences from river bank slope instability and the deteriorating condition of the aerial crossing structure and pipe.

The proposed crossing will be 168 mm (6 inch) outside diameter pipe, approximately 880 metres long. The HDD drill will enter near the existing western terminus of the aerial crossing and exit 650 m north of the existing east terminus to avoid the unstable slope. The replacement crossing, with an estimated cost of approximately \$8.3 million, is to be in-service by July 2011 and the existing aerial crossing removed from service by October 2011.

In its Application Terasen Gas considered several alternatives, one of which is to replace the existing 291 mm (8 inch) aerial crossing with a new 9 km 168 mm (6 inch) transmission pressure ("TP") pipe alignment and another the replacement with a new 9 km 219 mm (8 inch) intermediate pressure ("IP") pipe alignment, together with a TP/IP station. The location of the crossings are shown on the map below.



APPENDIX A to Order G-109-10 Page 2 of 3

> TELEPHONE: (604) 660-4700 BC TOLL FREE: 1-800-663-1385 FACSIMILE: (604) 660-1102

SIXTH FLOOR, 900 HOWE STREET, BOX 250 VANCOUVER, BC V6Z 2N3 CANADA web site: http://www.bcuc.com



#### THE REGULATORY PROCESS

The Commission has established a Written Public Hearing and Regulatory Timetable for the regulatory review of the Application. The Regulatory Timetable can be viewed on the Commission's web site at <u>www.bcuc.com</u>.

#### INTERVENTION

Persons who expect to actively participate in the Terasen Gas proceeding should register as Intervenors with the Commission, and should identify the issues that they intend to pursue as well as the nature and extent of their anticipated involvement in the review process. Intervenors will each receive a copy of the Application, all correspondence and filed documentation and should provide an e-mail address, if available.

Persons not expecting to actively participate, but who have an interest in the proceeding, should register as Interested Parties. Interested Parties will receive a copy of the Executive Summary in the Application, and all Orders and Decisions issued.



APPENDIX A to Order G-109-10 Page 3 of 3

SIXTH FLOOR, 900 HOWE STREET, BOX 250 VANCOUVER, BC V6Z 2N3 CANADA web site: http://www.bcuc.com

TELEPHONE: (604) 660-4700 BC TOLL FREE: 1-800-663-1385 FACSIMILE: (604) 660-1102

Intervenors and Interested Parties should register in writing, no later than Thursday, August 24, 2010. Notification by mail, courier delivery, fax or e-mail is acceptable.

All submissions and/or correspondence received from active participants or the general public relating to the Application will be placed on the public record and posted to the Commission's web site.

#### PUBLIC INSPECTION OF THE DOCUMENTS

The Application and supporting materials will be available for inspection at the following locations:

**British Columbia Utilities Commission**, Sixth Floor, 900 Howe Street Vancouver, BC V6Z 2N3 Telephone: 1-800-663-1385 Internet: <u>www.bcuc.com</u>

Terasen Gas Office16705 Fraser HighwaySurrey, BC V6N 0E8Internetwww.terasengas.com

For further information, please contact Ms. Erica Hamilton, Commission Secretary, or Mr. Robert Brownell, Senior Energy Analyst as follows:

Telephone: (604) 660-4700 Facsimile: (604) 660-1102 BC Toll Free: 1-800-663-1385 E-mail: Commission.Secretary@bcuc.com

### BRITISH COLUMBIA UTILITIES COMMISSION ORDER NUMBER C-<mark>XX</mark>-10

TELEPHONE: (604) 660-4700

BC TOLL FREE: 1-800-663-1385

FACSIMILE: (604) 660-1102



SIXTH FLOOR, 900 HOWE STREET, BOX 250 VANCOUVER, B.C. V6Z 2N3 CANADA web site: http://www.bcuc.com

#### IN THE MATTER OF the Utilities Commission Act, R.S.B.C. 1996, Chapter 473

and

An Application by Terasen Gas Inc. for a Certificate of Public Convenience and Necessity for the Upgrade of Transmission Pipeline Crossing of the Kootenay River near Shoreacres

#### **BEFORE:**

XXX YY, 2010

#### CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY

#### WHEREAS:

- A. On July 15, 2010, Terasen Gas Inc. ("TGI") applied (the "Application") to the British Columbia Utilities Commission (the "Commission"), pursuant to sections 45 and 46 of the Utilities Commission Act (the "Act"), for a Certificate of Public Convenience and Necessity ("CPCN") to install a natural gas transmission pipeline, using horizontal directional drilled ("HDD") technology, that crosses the Kootenay River near the community of Shoreacres (the "Kootenay River Crossing (Shoreacres) Upgrade Project" or the "Project"); and
- B. The HDD crossing, as proposed by TGI in the Kootenay River Crossing (Shoreacres) Upgrade Project, will be approximately 880 metres (0.5 mile) of 168 mm (6 inch) pipeline. The Project will replace the existing 219 mm (8 inch) aerial crossing; and
- C. TGI states that it considered several alternatives in the Application, one of which was the replacement of the existing aerial crossing with a new 9 km 168 mm (6 inch) transmission pressure ("TP") pipe alignment and another the replacement with a new 9 km 219 mm (8 inch) intermediate pressure ("IP") pipe alignment, together with a TP/IP station; and
- D. TGI is proposing the Kootenay River Crossing Upgrade Project as the preferred solution to address potential consequences from the slope instability at the east terminus of the existing aerial crossing and the deteriorating condition of the aerial crossing structure and pipe; and
- E. TGI proposes to start installation of the new crossing in April 2011 and to have the new crossing in-service by July 2011 with the aerial crossing removal and final site clean up as soon as practical thereafter. TGI has estimated the cost of the project will be \$8.3 million including Allowance for Funds Used During Construction ("AFUDC"); and

F By Order G-XX-10 dated <date>, the Commission determined that the Application would be examined by a Written Public Hearing process, and established a Regulatory Timetable; and

2

- G. The Written Public Hearing process concluded with the filing of TGI's Reply Submission; and
- H. The Commission Panel has considered the Application, the evidence and submissions filed in the proceeding and has determined that the Project is in the public interest and that a CPCN should be granted to TGI for the Project for the reasons set out in the Reasons for Decision that accompany this Order.

**NOW THEREFORE** pursuant to sections 45 and 46 of the Act, the Commission orders as follows:

- 1. A Certificate of Public Convenience and Necessity is granted to TGI for construction and operation of the Kootenay River Crossing (Shoreacres) Upgrade Project, as applied for in the Application.
- 2. TGI shall file with the Commission by April 29, 2011, a report (the "Report") providing a description of the contract with the HDD contractor; identification of the components of the Project where cost risk is with the utility and its ratepayers; a description and analysis of risk allocation; a detailed control budget for the Project; an updated Project schedule; TGI's intentions and recommendations with regard to the completion of the Project; and cost estimates that have a 50 percent probability ("P50") and a 90 percent probability ("P90") that the actual cost of the Project will not exceed the cost estimates. The control budget will be consistent with the P50 cost estimate.
- 3. TGI shall file with the Commission Quarterly Progress Reports on the Project using a format similar to that used in the Fraser River Crossing Upgrade Project.
- 4. TGI shall file with the Commission a final Report, within six months of the end or substantial completion of the Project, that provides a complete breakdown of the final costs of the Project, compares these costs to the updated cost estimate, and provides an explanation and justification of material cost variances.
- 5. TGI shall comply with the directives of the Commission Panel in the Reasons for Decision that accompany this Order.

**DATED** at the City of Vancouver, in the Province of British Columbia, this

<mark>XX</mark>

day of December 2010.

BY ORDER

Original signed by:

**Commissioner/Panel Chair**