FortisBC Resource Planning Advisory Group

2017 LTGRP – Workshop 3

August 9, 2017

Safety Message

- Identify the location of emergency exits
- Determine the muster location in case we have to evacuate the building
- Dial 911 for emergencies
- Earthquake Awareness:

Introductions

RPAG Members:

• Name and Affiliation

FortisBC Staff:

- Name
- Role as it relates to the LTGRP

2017 LTGRP Timeline

Please note

- Your contributions may be used for formulating our regulatory submission
- As such, your feedback may become public during the regulatory process
- We will not attribute statements to individual workshop attendees

Thank you for your active engagement

FortisBC Innovation to Meet Customer Preferences and Policy Objectives

Jason Wolfe, Director, Energy Solutions

August 9, 2017

Redacted

Redacted

Natural Gas, an Economic Solution

Residential Gas \$/kWh Price Comparison

Commercial Price Comparison

\$/kWh Price Comparison

Innovation and Customer Demand Working with builders and developers to bring gas to new developments.

Innovation and Customer Demand Demonstration and New Technology Projects

Innovation and Customer Demand Demonstration and New Technology Projects

FortisBC Energy Inc. (FEI) projects (non-DSM)

- Commercial Carbon Capture
- Residential CHP/Fuelcell

We received additional qualitative input

Input Theme	FortisBC Implementation
FEI should provide a graphical reconciliation if it uses multiple data sources to derive specific data points	Logged in 2017 LTGRP lessons learned documentation; this will be considered during planning for the next LTGRP.
FEI should use its Switch 'n' Shrink (SnS) program to validate fuel share changes in its forecast model	Net additions in forecast within range of historical net addition rates. SnS capture rate is low in relation to total market.
Data display and terminology	Considered the duration of historical data in report charts. Background guidelines on terms and formatting for 2017 LTGRP contributors.

Natural Gas for Transportation: Overview and Annual Demand Forecast

Mike Bains, Manager, Regulatory & Commercial Development

August 9, 2017

20

BRITISH

BC Energy Policy – GHG Emissions by Sector

Transportation related emissions:

 diesel-based transportation (~18% of Provincial share emissions) provides best opportunity to displace with natural gas to lower overall CO2e emissions

Greenhouse Gas Reduction (Clean Energy) Regulation

- Incentives enabled for eligible vehicles, maintenance facilities and expenditures for training, admin and marketing
- Gov't focus on refining existing regulations has continued to support the development of Natural Gas for Transportation markets in BC
- Supportive of the commitment and willingness to drive adoption of CNG/LNG and RNG to lower emissions from the Transportation sector

Natural Gas for Transportation: Stakeholder Approach

CNG/LNG Business Growth to Date

<u>CNG</u>

Waste Haulers - 206

Buses - 290

Food/Beverage /Parcel Delivery - 94

<u>LNG</u>

Heavy Duty Trucks - 158

Mine Haul Truck Pilot - 6

Ferries - 5

Remote Power - 3

CNG/LNG Business Growth to Date

79% compound annual growth rate in CNG and LNG demand over 2011-2018 period

Benefits to Date from NGT Development

Over 137 million diesel litres displaced to date (~ \$20 million in fuel savings since 2011)

Captured Demand of ~2.7 PJ per year (~33,700 homes)

Climate Leadership Plan

Over 135,000 tonnes of CO2e reduced to date (since 2011) Investment Opportunity in CNG/LNG Infrastructure

FORTIS BC^{**}
Energy at work

GGRR Investments To Date

Categories	Commitments to Date	GGRR Allowance
CNG Stations	\$9.8 million (7 stations)	\$12 million
LNG Stations, LNG Tankers and Truck Load Outs	\$22.5 million (5 stations, 6 LNG tankers, and 1 LNG truck load out)	\$50.5 million
Vehicle Incentives	\$53.1 million	\$210 million
Admin, Marketing and Training	\$3 million	\$8.1 million
Safety Upgrade Incentives	\$1.8 million	\$6 million

Demand Forecast Methodology

- Separate demand forecasts developed for CNG and LNG applications
 - Different market considerations for each CNG and LNG NGT markets
- Variance in use and characteristics
 - CNG: mainly On-road applications and short haul trucking
 - LNG: high horsepower on-road and off-road applications (i.e. marine, mine haul truck and rail)

CNG: Forecast Assumptions

- Diesel transportation market grows to 75 PJ in 2036 (57 PJ in 2016)
- Factors determining variance in forecast range of scenarios:
 - Natural gas engine availability and efficiencies
 - Diesel and natural gas price spreads
 - Carbon pricing
 - Policies and regulation supportive of CNG adoption

Long Term CNG Forecast

Annual Demand

GJ/Year

LNG: Adoption Assumptions

- If LNG gains prominence as a maritime fuel, marine sector (i.e. bunkering demand) expected to be largest share of overall domestic LNG demand in BC
- Policies and regulations supportive of LNG adoption as a transport fuel (i.e. IMO emissions regulations, further supportive regulatory environment limiting other PM and NOx) expected to spur LNG adoption
- Determination of market size of marine vessels regularly calling ports in BC and along West Coast of North America
- Technology (engine) availability to support NG adoption Locomotive engines

Marine engines

Mine haul truck engines, locomotive engines

• More uncertainty re: long term forecasts for marine LNG bunkering

LNG for Marine Bunkering

- 3 current paths to IMO Sulfur Cap compliance:
 - SOx Scrubbers Low Sulfur Marine Gas Oil LNG

Marine – Target Market Segments

- Each marine market segment operates in distinct ways
 - Different operational requirements (transit routes, vessel design, etc.)
- Each segment also requires fuel (i.e. bunkering) in distinct ways
 - i.e. truck-to-ship vs. ship/vessel-to-ship

The Opportunity - Vancouver as a LNG Bunkering Hub on the West Coast

Long Term LNG Adoption Scenarios

Annual Demand

Combined CNG and LNG Demand Forecast

Annual Demand

- Important for FEI to support the development of both markets over the long run to realize the CO2e reduction potential of the Transportation sector
- <u>Diverse application of markets is a stronger market rather than developing just one</u> <u>or a few market segments</u>

Demand Side Management Analysis Results

Robert Schuster, Integrated Resource Planning Manager

August 9, 2017

The LTGRP DSM analysis differs from the CPR and the DSM Expenditure Schedule

	CPR	LTGRP – DSM	DSM \$ Schedule
Purpose	Forecast	Forecast Scenario analysis	Budget request
Time horizon	Long term	Long term	Near term
Measure inputs	Per measure	Per measure	Per measure
Macroeconomic inputs	Reference case	Reference case Scenarios	Reference case
Historical program uptake and expenditures	Per program area	Per measure	Per program
Program deployment considerations	Not considered	Not considered	Considered

	Program Team Input		Program Team Input		
	4		~	5	
	CPR	LTGRP ·	– DSM	DSM \$ S	chedule
Purpose	Forecast	Forecast Scenario	analysis	Budget re	equest
Time horizon	Long term	Long terr	Long term		n
Measure inputs	Per measure	Per meas	ure	Per meas	ure
Macroeconomic inputs	Reference case	Reference Scenarios	e case	Reference	e case
Historical program uptake and expenditures	Per program area	Per meas	ure	Per progr	am
Program deployment considerations	Not considered	Not cons	idered	Consider	ed

	CPR	LTGRP – DSM	DSM \$ Schedule
Purpose	Forecast	Forecast Scenario analysis	Budget request
Time horizon	Long term	Long term	Near term
Measure inputs	Per measure	Per measure	Per measure
Macroeconomic inputs	Reference case	Reference case Scenarios	Reference case
Historical program uptake and expenditures	Per program area	Per measure	Per program
Program deployment considerations	Not considered	Not considered	Considered

DSM Analysis – Portfolio Results, Annual Demand

Annual Demand - Excluding Natural Gas for Transportation

DSM Analysis – Portfolio Results, Annual Expenditures

	REFERENCE CASE (MILLIONS)					
Year	Incentive Estimate	Non-Incentive Estimate	Total Estimate			
2017	\$ 27	\$ 5	\$ 31			
2018	\$ 30	\$ 5	\$ 35			
2019	\$ 31	\$ 5	\$ 36			
2020	\$ 33	\$ 5	\$ 39			
2021	\$ 42	\$ 7	\$ 49			
2022	\$ 41	\$6	\$ 47			
2023	\$ 46	\$ 7	\$ 52			
2024	\$ 43	\$ 7	\$ 50			
2025	\$ 36	\$ 6	\$ 42			
2026	\$ 35	\$6	\$ 41			
2027	\$ 33	\$6	\$ 39			
2028	\$ 32	\$6	\$ 38			
2029	\$ 32	\$6	\$ 37			
2030	\$ 33	\$ 6	\$ 39			
2031	\$ 29	\$ 5	\$ 34			
2032	\$ 25	\$ 5	\$ 30			
2033	\$ 25	\$4	\$ 29			
2034	\$ 25	\$4	\$ 29			
2035	\$ 25	\$4	\$ 29			
2036	\$ 25	\$4	\$ 29			

N.B.: 2017 LTGRP DSM results are projections only on a 2015 base year that exclude non-program administrative and enabling expenditures, do not assume efficiencies of scale, do not include operational program delivery considerations, do include measures that do not exist in the current portfolio, and do not account for unforeseen future technologies. Cost test results exclude behavioral and energy management measures.

DSM Analysis – Portfolio Results, Cost Tests, Reference Case

Year	TRC	UCT
Aggregate	2.2	2.2
2017	4.8	4.4
2018	4.1	3.7
2019	3.5	3.2
2020	3.1	2.9
2021	2.8	2.7
2022	2.6	2.5
2023	2.4	2.4
2024	2.3	2.3
2025	2.3	2.2
2026	2.2	2.2
2027	2.1	2.1
2028	2.1	2.1
2029	2.0	2.1
2030	2.0	2.1
2031	2.0	2.0
2032	2.0	2.0
2033	2.0	2.0
2034	2.0	2.0
2035	2.0	2.0
2036	2.0	2.0

DSM Analysis – Portfolio Results, Key Scenarios

TRC

DSM Analysis – Portfolio Results, Key Scenarios

N.B.: 2017 LTGRP DSM results are projections only on a 2015 base year that exclude non-program administrative and enabling expenditures, do not assume efficiencies of scale, do not include operational program delivery considerations, do include measures that do not exist in the current portfolio, and do not account for unforeseen future technologies. Cost test results exclude behavioral and energy management measures.

DSM Analysis – Portfolio Results, Top 10 Measures

	REFERENCE CASE	UPPER B	OUND	LOWER E	BOUND
Measures	2036 Cumulative	2036 Cumulative	% Change from	2036 Cumulative	% Change from
	Savings (GJ)	Savings (GJ)	Reference Case	Savings (GJ)	Reference Case
Com NC measure 45 %>code	1,581,337	2,631,732	66%	819,329	-48%
Res Smart Thermostats	1,364,259	1,433,232	5%	706,260	-48%
Ind Process Boiler Load Control	1,006,385	0	-100%	247,243	-75%
Res Efficient Fireplaces	980,244	986,687	1%	974,217	-1%
Res Home Energy Reports	682,987	711,710	4%	359,450	-47%
Com HVAC Control Upgrades - Direct Digital Data	672,362	373,675	-44%	128,123	-81%
Res ENERGY STAR Home	559,221	766,373	37%	35,404	-94%
Ind Gas Ventilation Optimization	527,271	612,812	16%	209,427	-60%
Ind Heat Recovery Systems	475,244	619,890	30%	210,595	-56%
Com Gas Condensing Boiler_ROB	464,484	503,378	8%	102,730	-78%

DSM Analysis – Residential Results, Annual Demand

Annual Demand - Excluding Natural Gas for Transportation

DSM Analysis – Residential Results, Annual Expenditures

	REFERENCE CASE (MILLIONS)					
Year	Incentive Estimate	Non-Incentive Estimate	Total Estimate			
2017	\$ 16	\$ 3	\$ 19			
2018	\$ 17	\$ 4	\$ 21			
2019	\$ 16	\$ 3	\$ 19			
2020	\$ 16	\$ 3	\$ 19			
2021	\$ 19	\$ 4	\$ 23			
2022	\$ 17	\$ 4	\$ 21			
2023	\$ 17	\$ 4	\$ 21			
2024	\$ 22	\$ 5	\$ 27			
2025	\$ 17	\$ 3	\$ 20			
2026	\$ 16	\$ 3	\$ 19			
2027	\$ 15	\$ 3	\$ 19			
2028	\$ 15	\$ 3	\$ 18			
2029	\$ 15	\$ 3	\$ 18			
2030	\$ 16	\$ 3	\$ 20			
2031	\$ 13	\$ 3	\$ 15			
2032	\$ 10	\$ 2	\$ 12			
2033	\$ 10	\$ 2	\$ 12			
2034	\$ 10	\$ 2	\$ 12			
2035	\$ 10	\$ 2	\$ 12			
2036	\$ 10	\$ 2	\$ 13			

N.B.: 2017 LTGRP DSM results are projections only on a 2015 base year that exclude non-program administrative and enabling expenditures, do not assume efficiencies of scale, do not include operational program delivery considerations, do include measures that do not exist in the current portfolio, and do not account for unforeseen future technologies. Cost test results exclude behavioral and energy management measures.

DSM Analysis – Residential Results, Cost Tests, Reference Case

Year	TRC	MTRC	UCT
Aggregate	1.6	7.2	2.3
2017	2.4	9.7	2.9
2018	2.2	9.0	2.8
2019	2.1	8.8	2.7
2020	2.1	8.6	2.7
2021	1.9	8.2	2.6
2022	1.9	7.9	2.5
2023	1.8	7.7	2.4
2024	1.7	7.3	2.3
2025	1.6	7.2	2.3
2026	1.6	7.1	2.3
2027	1.6	7.0	2.3
2028	1.5	6.9	2.2
2029	1.5	6.8	2.2
2030	1.5	6.7	2.2
2031	1.5	6.7	2.2
2032	1.5	6.9	2.2
2033	1.5	7.1	2.3
2034	1.6	7.2	2.3
2035	1.6	7.4	2.4
2036	1.6	7.6	2.4

DSM Analysis – Residential Results, Key Scenarios

MTRC

DSM Analysis – Residential Results, Key Scenarios

DSM Analysis – Residential Results, Top 10 Measures

	REFERENCE CASE	UPPER B	OUND	LOWER E	BOUND
Measures	2036 Cumulative	2036 Cumulative	% Change from	2036 Cumulative	% Change from
	Savings (GJ)	Savings (GJ)	Reference Case	Savings (GJ)	Reference Case
Res Smart Thermostats	1,364,259	1,433,232	5%	706,260	-48%
Res Efficient Fireplaces	980,244	986,687	1%	974,217	-1%
Res Home Energy Reports	678,661	705,222	4%	358,683	-47%
Res ENERGY STAR Home	559,221	766,373	37%	35,404	-94%
Res Condensing Gas Tankless Water Heater	365,968	373,020	2%	266,322	-27%
Res Crawlspace Duct Ins	279,659	295,545	6%	133,456	-52%
Res Attic Insulation	230,539	244,145	6%	103,881	-55%
Res Non-Condensing Gas Storage Water Heater	188,474	200,644	6%	0	-100%
Res Passive House	162,467	230,622	42%	7,850	-95%
Res Basement Insulation	131,909	137,616	4%	52,819	-60%

DSM Analysis – Commercial Results, Annual Demand

Annual Demand - Excluding Natural Gas for Transportation

DSM Analysis – Commercial Results, Annual Expenditures

	REFERENCE CASE (MILLIONS)					
Year	Incentive Estimate	Non-Incentive Estimate	Total Estimate			
2017	\$ 9	\$1	\$ 10			
2018	\$ 11	\$1	\$ 12			
2019	\$ 13	\$1	\$ 14			
2020	\$ 15	\$1	\$ 16			
2021	\$ 21	\$ 2	\$ 22			
2022	\$ 21	\$ 2	\$ 23			
2023	\$ 26	\$ 2	\$ 28			
2024	\$ 18	\$1	\$ 19			
2025	\$ 17	\$1	\$ 18			
2026	\$ 16	\$1	\$ 17			
2027	\$ 15	\$1	\$ 16			
2028	\$ 14	\$1	\$ 15			
2029	\$ 13	\$1	\$ 14			
2030	\$ 13	\$1	\$ 14			
2031	\$ 13	\$1	\$ 14			
2032	\$ 12	\$1	\$ 13			
2033	\$ 12	\$1	\$ 13			
2034	\$ 12	\$1	\$ 13			
2035	\$ 11	\$1	\$ 12			
2036	\$ 11	\$1	\$ 12			

N.B.: 2017 LTGRP DSM results are projections only on a 2015 base year that exclude non-program administrative and enabling expenditures, do not assume efficiencies of scale, do not include operational program delivery considerations, do include measures that do not exist in the current portfolio, and do not account for unforeseen future technologies. Cost test results exclude behavioral and energy management measures.

DSM Analysis – Commercial Results, Cost Tests, Reference Case

Year	TRC	UCT
Aggregate	2.8	2.2
2017	5.8	5.0
2018	5.3	4.4
2019	4.5	3.7
2020	4.0	3.3
2021	3.5	2.9
2022	3.2	2.6
2023	3.0	2.4
2024	2.9	2.3
2025	2.8	2.3
2026	2.7	2.2
2027	2.7	2.1
2028	2.6	2.1
2029	2.6	2.1
2030	2.6	2.0
2031	2.5	2.0
2032	2.5	2.0
2033	2.5	1.9
2034	2.4	1.9
2035	2.4	1.9
2036	2.4	1.9

DSM Analysis – Commercial Results, Key Scenarios

TRC

N.B.: 2017 LTGRP DSM results are projections only on a 2015 base year that exclude non-program administrative and enabling expenditures, do not assume efficiencies of scale, do not include operational program delivery considerations, do include measures that do not exist in the current portfolio, and do not account for unforeseen future technologies. Cost test results exclude behavioral and energy management measures.

DSM Analysis – Commercial Results, Key Scenarios

CCE (\$/GJ)

N.B.: 2017 LTGRP DSM results are projections only on a 2015 base year that exclude non-program administrative and enabling expenditures, do not assume efficiencies of scale, do not include operational program delivery considerations, do include measures that do not exist in the current portfolio, and do not account for unforeseen future technologies. Cost test results exclude behavioral and energy management measures.

DSM Analysis – Commercial Results, Top 10 Measures

	REFERENCE CASE	UPPER B	OUND	LOWER E	BOUND
Measures	2036 Cumulative	2036 Cumulative	% Change from	2036 Cumulative	% Change from
	Savings (GJ)	Savings (GJ)	Reference Case	Savings (GJ)	Reference Case
Com NC measure 45 %>code	1,581,337	2,631,732	66%	819,329	-48%
Com HVAC Control Upgrades - Direct Digital Data	672,362	373,675	-44%	128,123	-81%
Com Gas Condensing Boiler_ ROB	464,484	503,378	8%	102,730	-78%
Res Heat Control System for Boilers	351,360	506,668	44%	0	-100%
Res Fireplace Timers	310,968	490,350	58%	0	-100%
Com Condensing Make Up Air Unit_Gas	304,921	258,153	-15%	69,598	-77%
Com Comprehensive Retrocomissioning	261,513	292,099	12%	79,929	-69%
Com Gas Boiler - Mid Efficiency	260,351	0	-100%	59,118	-77%
Com NC measure 30 %>code	220,115	506,276	130%	3,032	-99%
Res Central High Eff Boiler Replace	215,482	272,243	26%	271	-100%

DSM Analysis – Industrial Results, Annual Demand

Annual Demand - Excluding Natural Gas for Transportation

DSM Analysis – Industrial Results, Annual Expenditures

	REFERENCE CASE (MILLIONS)					
Year	Incentive Estimate	Non-Incentive Estimate	Total Estimate			
2017	\$ 2	\$1	\$ 3			
2018	\$ 2	\$1	\$ 3			
2019	\$ 2	\$1	\$ 3			
2020	\$ 2	\$1	\$ 3			
2021	\$ 2	\$1	\$ 3			
2022	\$ 2	\$1	\$ 4			
2023	\$ 3	\$1	\$ 4			
2024	\$ 3	\$1	\$ 4			
2025	\$ 3	\$1	\$ 4			
2026	\$ 3	\$1	\$ 5			
2027	\$ 3	\$ 2	\$ 5			
2028	\$ 3	\$ 2	\$ 5			
2029	\$ 3	\$ 2	\$ 5			
2030	\$ 3	\$ 2	\$ 5			
2031	\$ 3	\$ 2	\$ 5			
2032	\$ 3	\$ 2	\$ 5			
2033	\$ 3	\$ 2	\$ 5			
2034	\$ 3	\$ 2	\$ 5			
2035	\$ 3	\$ 1	\$ 4			
2036	\$ 3	\$ 1	\$ 4			

DSM Analysis – Industrial Results, Cost Tests, Reference Case

Year	TRC	UCT
Aggregate	1.7	1.8
2017	1.7	1.8
2018	1.7	1.8
2019	1.7	1.8
2020	1.7	1.8
2021	1.7	1.8
2022	1.7	1.8
2023	1.7	1.8
2024	1.7	1.8
2025	1.7	1.8
2026	1.7	1.8
2027	1.7	1.8
2028	1.7	1.8
2029	1.7	1.8
2030	1.7	1.8
2031	1.7	1.8
2032	1.6	1.8
2033	1.6	1.8
2034	1.6	1.8
2035	1.6	1.8
2036	1.6	1.8

DSM Analysis – Industrial Results, Key Scenarios

TRC

DSM Analysis – Industrial Results, Key Scenarios

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 20^{1} 20^{2} 20^{2} 20^{1} 20^{1} 20^{1} 20^{1} 20^{1} 20^{1} 20^{1} 20^{2} 2—Reference Case — Upper Bound Lower Bound

DSM Analysis – Industrial Results, Top 10 Measures

	REFERENCE CASE	UPPER BOUND		LOWER BOUND	
Марсикос	2036 Cumulative	2036 Cumulative	% Change from	2036 Cumulative	% Change from
IviedSuleS	Savings (GJ)	Savings (GJ)	Reference Case	Savings (GJ)	Reference Case
Ind Process Boiler Load Control	1,006,385	0	-100%	247,243	-75%
Ind Gas Ventilation Optimization	527,271	612,812	16%	209,427	-60%
Ind Heat Recovery Systems	475,244	619,890	30%	210,595	-56%
Ind Energy Management	378,387	237,218	-37%	184,125	-51%
Ind Process Control	339,593	371,147	9%	108,900	-68%
Ind Unit Heater	227,530	470,528	107%	75,674	-67%
Ind Condensing Boiler	184,986	278,421	51%	73,951	-60%
Ind Insulation	91,732	113,356	24%	34,640	-62%
Ind Regenerative Catalytic Oxidizer	86,550	100,398	16%	27,913	-68%
Ind Improved Condensate Return	71,373	0	-100%	28,254	-60%

N.B.: 2017 LTGRP DSM results are projections only on a 2015 base year that exclude non-program administrative and enabling expenditures, do not assume efficiencies of scale, do not include operational program delivery considerations, do include measures that do not exist in the current portfolio, and do not account for unforeseen future technologies. Cost test results exclude behavioral and energy management measures.

DSM Analysis – Portfolio Results, Energy Savings

DSM Energy Savings

DSM Analysis – Portfolio Results, Total Annual Demand

Annual Demand - Including Natural Gas for Transportation

System Requirements and Options Analysis Results

Terry Penner, System Capacity Planning Manager

August 9, 2017

System Capacity Planning

This afternoon we will discuss...

Method for determining peak hour demand for End-Use Scenarios.

Results of Traditional, and End-Use Regional Peak Demand Forecasts and proposed infrastructure alternatives

Impact of LNG Forecasts

Impact of DSM

Contingency Plans (timing adjustments) to meet various forecast peak demand

Peak Demand - Recap

Traditionally...

- Base year peak demand for UPC_{peak} values derived from currently measured consumption
- The UPC_{peak} values remain constant.
- Peak demand growth = ∑customer adds x UPC_{peak}

The current industrial accounts are held constant with no increase or decrease in peak consumption over time An exploratory <u>End-Use</u> alternative to the traditional method...

- Base year peak demand is determined in the traditional manner.
- The UPC_{peak} values for existing and new customers core and industrial customers are varied over the planning period.
- UPC_{peak} variations are derived considering the same end use factors used to determine annual demand in each scenario.
- Industrial accounts will vary in the high and low forecasts.

Peak Demand Forecasts from End-Use Scenarios

In its decision regarding the FEU 2014 LTRP the BCUC asked FEI to:

...make stronger linkages between the peak demand and the annual demand forecasts

...to understand how "new insights on evolving customer consumption patterns might affect time-of-day demand as well as annual demand

...how changes in... annual demand under different scenarios translate into changes in... peak demand under the same scenario assumptions."
Peak Demand Forecasts from End-Use Scenarios

Consultant engaged to develop a process linking peak demand forecasts to the end-use scenarios used in the annual forecasting.

- Method relies on applying hours use factors from end-use load shape profiles
- Load shapes were applied to sequentially break down:
 - Annual → peak monthly consumption
 - Peak monthly → peak daily consumption
 - Peak daily → peak hourly consumption
- End-Use Base Year hourly UPC_{peak} for each rate schedule and region were derived.
- Results corrected to design temperatures for each region
- Calibration factors to match FEI's current values of UPC_{peak} were determined

Infrastructure to Meet Peak Demand Forecasts

The following slides will present the infrastructure requirements to meet the regional peak demand

In each region we will:

- Briefly review current infrastructure (schematics)
- Review the system capacity constraint using our current traditional peak forecast with high and low forecast variations in project timing(including CNG peak impacts)
- Review system expansion options
- Review the capacity constraint timing variation with the End-Use forecasts
- Review the impacts of DSM on the capacity constraint timing

VI Transmission System

VI Capacity Constraint Under Traditional Peak Forecasts

VI Infrastructure to meet Traditional Peak Forecasts

System Expansion Alternatives:

Option 1 – Additional Compression

Construct a new Compressor facility (V2) in the Squamish area in 2028

Option 2 – Increase Mt Hayes Send Out

- Increase Send Out above the current 50 MMscfd in 2028.
- Mt Hayes vapourizer capacity is sufficient beyond the 20 year planning horizon
- In 2030 additional compression at Squamish is required due to LNG inventory constraints

Key Input – BC Hydro Island Generation peak supply (50 TJ)

- Agreement expires in 2022 six years before the expected capacity constraint
- The final form of this agreement could defer the capacity constraint to later in or beyond the 20 year planning horizon
- a key input into determining the preferred option

VI Capacity Constraint Under End-Use Forecasts

VI Capacity Constraint Under End-Use Forecasts (DSM Impacts)

80

Coastal Transmission System

CTS Capacity Constraint Under Traditional Peak Forecasts

CTS Capacity Constraint Under End-Use **Forecasts** 2,400 2,200 **Capacity with LMSU** 2,000 Capacity before LMSU 1,800 1,600 Daily Demand (TJ/d) 1,400 1,200 Upper Bound 1,000 Traditional 800 Reference 600 Lower Bound 400 Before LMSU 200 LMSU Capacity 0 2017 2016 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

Winter Season

CTS Capacity Constraint Under End-Use Forecasts

Proprietary and Confidential

CTS Traditional Peak Forecasts with CNG & LNG Impacts

Proprietary and Confidential

CTS Expansion Possibilities to meet LNG Forecasts

		Max CTS Delivery to South Delta/Richmond	
Expansion Scenario	CTS Expansion Description	With Export LNG on VI System (260 TJ/d)	Without Export LNG on VI System
1	LMSU Project	98 TJ/d	264 TJ/d
2	 Add Replacement of 1.9 Km NPS 6 feed to Tilbury Plant Add 2 T70 compressor units at Langley Compressor Stn 	276 TJ/d	436 TJ/d
3	 Add 14.8 km NPS42 Loop from Langley Compressor to Clayton Valve Stn Add 2 T70 compressor units at Langley Compressor Stn 	448 TJ/d	577 TJ/d
4	 Add 28.1 Km NPS42 Loop from Clayton Valve Stn to Tilbury Area. Add 25 Km NPS42 Loop from Huntingdon to Langley Compressor Stn Add 2 T70 compressor units at Langley Compressor 	1306 TJ/d	1414 TJ/d

CTS Expansion Possibilities to meet LNG Forecast

Interior Transmission System

ITS Capacity Constraint Under Traditional Peak Forecasts

ITS Infrastructure to meet Traditional Peak Forecast

System Expansion Alternatives:

Option 1 – Okanagan Reinforcement - South Loop

- Loop approximately 28 Km of existing NPS12 pipeline with NPS20 pipeline
- Upgrade inlet to Kelowna Gate #1
- Add Compression at Kitchener B Compressor Station

Option 2 – Okanagan Reinforcement -North Loop

- Loop approximately 52 Km of existing NPS12 pipeline with NPS 20
- Upgrade Kelowna Gate #1

Option 3 – LNG Peak Shaving Facility

- Approximately 30+ TJ/d LNG peak Shaving
- Optimum location is near ITS no flow point near Vernon

ITS Capacity Constraint Under End-Use

ITS Capacity Constraint Under End-Use

Proprietary and Confidential

Questions?

Delivery Rate Impact Projections

Gerald Chan, Cost of Service Manager

August 9, 2017

High-level method

- Energy projections
- Delivery cost high-level long term projections
- Not a detailed rate forecast
- Does not consider future rate design changes

Key assumptions and caveats

Delivery Cost Components:

- Earned return on assets in service (pipelines, compressor stations, LNG, etc.)
- Operations & Maintenance
- Income taxes
- Property taxes

Delivery costs excludes:

- Gas commodity & midstream costs
- PST / GST
- Carbon tax

Delivery cost projections:

- Current delivery cost increased at 2% per year across planning horizon
- Added cost for major projects

1. All energy, **excluding** DSM and NGT

101

Delivery Costs \$Million

103

2. All energy, including DSM **but** excluding NGT

106

Proprietary and Confidential

Average Delivery Rate Direction: Reference / Upper Bound / Lower Bound + DSM

3. All energy, including DSM and NGT

113

Summary of average delivery rate changes

	Base		Base + DSM		Base + DSM + NGT	
	Rate Change (2015-36, %)		Rate Change (2015-36, %)		Rate Change (2015-36, %)	
	Cumulative	Compound Annual	Cumulative	Compound Annual	Cumulative	Compound Annual
Reference Case	54	2.1	73	2.7	58	2.2
Upper Bound	28	1.2	43	1.7	20	0.9
Lower Bound	189	5.2	211	5.5	199	5.4

Greenhouse Gas Emissions Impact Projections

Robert Schuster, Integrated Resource Planning Manager

August 9, 2017

Emissions from combusting natural gas from FEI's system depend on the scenario

Annual Greenhouse Gas Emissions (tonnes) - Excluding NGT

Emissions impact of Renewable Natural Gas without Natural Gas for Transportation

Annual GHG Emissions Impact (tonnes)

Emissions impact of DSM only (Conservation & Energy Management Programs) **without** Natural Gas for Transportation

Annual GHG Emissions Impact (tonnes)

Emissions impact of Natural Gas for Transportation only

Annual GHG Emissions Impact (tonnes)

N.B.: This chart displays emissions reductions from FEI customers using natural gas; only a portion of projected Natural Gas for Transportation emissions reductions accrue to the current boundaries of the BC emissions inventory.

Cumulative emissions impact without Natural Gas for Transportation

Cumulative emissions impact **with** Natural Gas for Transportation

Annual GHG Emissions Impact (tonnes)

N.B.: This chart displays emissions reductions from FEI customers using natural gas; only a portion of projected Natural Gas for Transportation emissions reductions accrue to the current boundaries of the BC emissions inventory.

Next steps

The 2017 LTGRP

- Introduction
- Planning Environment
- Demand Forecasts
- Demand-side Management
- Gas Supply
- System Resource Needs
- Engagement and Feedback
- 20-Year Vision
- Action Plan

Thank you

For further information, please contact:

FortisBC Integrated Resource Planning

irp@fortisbc.com

Find FortisBC at:

Fortisbc.com

604-676-7000