FortisBC Resource Planning Advisory Group

2017 LTGRP – Workshop 2

April 11, 2017

Do not store on US data storage devices

Safety Message

- Identify the location of emergency exits
- Determine the muster location in case we have to evacuate the building
- Dial 911 for emergencies
- Earthquake Awareness:

Introductions

RPAG Members:

- Name and Affiliation
- One energy related item that has caught your attention

FortisBC Staff:

- Name and role as it relates to the LTGRP
- One energy related item that has caught your attention

Welcome Message

Dennis Swanson Vice President of Energy Supply FortisBC

2017 LTGRP Timeline

Purpose of the LTGRP

Problem Statement:

What resources must FortisBC have in place to supply customers' energy needs safely, reliably and cost-effectively over the next 20 years?

- Demand Side Management
- Natural Gas Supply
- Infrastructure

Please note

- Your contributions may be used for formulating our regulatory submission
- As such, your feedback may become public during the regulatory process
- We will not attribute statements to individual workshop attendees

Thank you for your active engagement

Has FortisBC missed or misinterpreted any critical developments in the planning environment?

Has FortisBC clearly explained how it is approaching the scenario analysis?

Is FortisBC's scenario building approach reasonable?

Do you recommend alternative approaches (to FortisBC's statistical approach) for approximating economic growth?

Given potential shifts in US energy policy, should FortisBC consider a more conservative boundary for the delayed policy outcome?

Are the storylines in FortisBC's intermediate scenarios reasonable?

We received additional qualitative input – stakeholder engagement process

Input Theme	FortisBC Implementation
Clarify purpose of the resource plan to help focus the discussion	Recap at start of input gathering activities
Meet in person soon to further discuss the scenario assumptions	Adjusted agenda for April 11 workshop

We received additional qualitative input – analysis process

Input Theme	FortisBC Implementation
Consider difference between policy targets and implemented policy actions to achieve such targets	Clarified approach for each critical uncertainty
Ensure scenarios contain rich, multi- layered plotlines	Considered resource plan objectives & moderately increased richness

We received additional qualitative input – report commentary

Input Theme	FortisBC Implementation
Include cost effective GHG emissions reductions in planning objectives	Ongoing discussions with FortisBC Regulatory and senior leadership
Recognize recorded First Nations statements to institutionalize these in public discourse	Ongoing discussions with FortisBC Regulatory and Community & Indigenous Relations

Traditional Forecast

Definitions

A time series forecast that relies on detailed actual data from our customers

Methods identical to short term (financial) forecasts

Good accuracy, particularly in the short term

"Business as usual" in the long term

Residential Customers

- Apply the growth rate from the long term CBOC forecast to the 2015 customer additions
- Single and multifamily forecast independently
- The first five years match the most recent short term forecast

Commercial Customers

- First 5 years: Uses the most recent short term forecast
- Final 15 years: Based on BC STATS forecast

Residential Use Rate

- First 5 years: Uses the most recent short term forecast
- Final 15 years: Continuation of the time series regression from the first five years

Industrial Forecast

Industrial Demand

- First 5 years: Uses the most recent Industrial Survey
- Final 15 years: Held constant at the level of the final year of the survey

Transitioning to an End Use Forecast

Time Series Pros

- Based on our own customers
- · All factors are intrinsic and therefore accounted for

Time Series Cons

- · Assumes behavior today will not change
- · Forecasts are straight lines there can be no inflection points

End Use advantages

- Models each appliance independently
 - Use rate
 - Adoption rate
 - Standards

2017 Long-Term Gas Resource Plan (LTGRP) Worked Example

April 11, 2017

Posterity Group Consulting Inc. 207 Bank St., Suite 248 Ottawa, ON, K2P 2N2 Tel: 613.897.3783 info@posteritygroup.ca www.posteritygroup.ca

CREATED FOR:

93% Updating Feeds 1:25 PM

FortisBC 16705 Fraser Highway Surrey, BC V4N 0E8

Exceptional Analytics and Advisory Services for the Energy Industry

Agenda

1. Introduction

- ✓ About the Worked Example
- ✓ Consumption Equation
- \checkmark Definitions and Acronyms
- 2. Base Year: 2015
- 3. Reference Case: 2016
- 4. Reference Case: 2022
- 5. Forecast: 2016-2036

About the Worked Example (1 of 3) OSTERITY

- The model and its methods are transparent, but not simple. We focus in on one specific case and detail how consumption was calculated as an illustration of how the model functions.
- ✓ The worked example will show how consumption was calculated for three specific years during the forecast:
- I. 2015 (the base year),
- II. 2016 (the first year of the forecast), and;
- III. 2022.
- ✓ Annual consumption for the forecast period (2016-2036) is presented at the end.

About the Worked Example (2 of 3) OSTERITY GROUP

The worked example case is specific to:

- ✓ Sector: residential (Rate 1)
- ✓ End-use: space heating (SH)
- ✓ Building type: single-family dwellings (SFD)
- ✓ Vintage: middle-age, built between1976-2005 (denoted 'G')
- ✓ Predominant heating fuel: natural gas (i.e. gets more than half its heating energy from gas), (denoted 'M')
- ✓ Region: Lower Mainland (LML).
- Calculations throughout the example will denote the year and specifics as required.
- ✓ Please see handout with notation to follow along through the worked example.
- ✓ Example subscript for worked example: G M, SFD, LML, SH

About the Worked Example (3 of 3) OSTERITY

	С	D	E	F	G	I. I.	L	М	0	Р	S	Y	AA
1	Sector 💌	Scenario 🔹	Region 💌	Fuel 💌	Rate Cl 💌	End Use 💌	Year 💌	Existin 🔻	Main Heating Fuel 💌	Segment Vintage	r Segme ▼	Units 💌	Consumption 💌
4094	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Clothes Dryer	2015	Existing	Gas Heat	1976-2005	SFD	212,927	51,591
4095	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Clothes Washer	2015	Existing	Gas Heat	1976-2005	SFD	212,927	-
4096	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Cooking	2015	Existing	Gas Heat	1976-2005	SFD	212,927	286,139
4097	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Dishwasher	2015	Existing	Gas Heat	1976-2005	SFD	212,927	-
4098	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Domestic Hot Water (DHW)	2015	Existing	Gas Heat	1976-2005	SFD	212,927	3,654,571
4099	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Fireplace	2015	Existing	Gas Heat	1976-2005	SFD	212,927	2,932,744
4100	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Other Electrical Internal Loads	2015	Existing	Gas Heat	1976-2005	SFD	212,927	-
4101	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Other Gas Uses	2015	Existing	Gas Heat	1976-2005	SFD	212,927	443,696
4102	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Pool & Spa Heaters	2015	Existing	Gas Heat	1976-2005	SFD	212,927	235,112
4103	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Space Cooling	2015	Existing	Gas Heat	1976-2005	SFD	212,927	-
4104	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Space Heating	2015	Existing	Gas Heat	1976-2005	SFD	212,927	13,029,669
4105	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Ventilation and Circulation	2015	Existing	Gas Heat	1976-2005	SFD	212,927	
4106	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Clothes Dryer	2016	Existing	Gas Heat	1976-2005	SFD	212,927	51,591
4107	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Clothes Washer	2016	Existing	Gas Heat	1976-2005	SFD	212,927	-
4108	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Cooking	2016	Existing	Gas Heat	1976-2005	SFD	212,927	286,139
4109	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Dishwasher	2016	Existing	Gas Heat	1976-2005	SFD	212,927	-
4110	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Domestic Hot Water (DHW)	2016	Existing	Gas Heat	1976-2005	SFD	212,927	3,645,132
4111	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Fireplace	2016	Existing	Gas Heat	1976-2005	SFD	212,927	2,913,602
4112	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Other Electrical Internal Loads	2016	Existing	Gas Heat	1976-2005	SFD	212,927	-
4113	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Other Gas Uses	2016	Existing	Gas Heat	1976-2005	SFD	212,927	443,696
4114	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Pool & Spa Heaters	2016	Existing	Gas Heat	1976-2005	SFD	212,927	235,112
4115	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Space Cooling	2016	Existing	Gas Heat	1976-2005	SFD	212,927	-
4116	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Space Heating	2016	Existing	Gas Heat	1976-2005	SFD	212,927	12,911,668
4117	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Ventilation and Circulation	2016	Existing	Gas Heat	1976-2005	SFD	212,927	-
4118	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Clothes Dryer	2016	New	Gas Heat	1976-2005	SFD	65	16
4119	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Clothes Washer	2016	New	Gas Heat	1976-2005	SFD	65	-
4120	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Cooking	2016	New	Gas Heat	1976-2005	SFD	65	87
4121	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Dishwasher	2016	New	Gas Heat	1976-2005	SFD	65	-
4122	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Domestic Hot Water (DHW)	2016	New	Gas Heat	1976-2005	SFD	65	1,113
4123	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Fireplace	2016	New	Gas Heat	1976-2005	SFD	65	755
4124	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Other Electrical Internal Loads	2016	New	Gas Heat	1976-2005	SFD	65	-
4125	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Other Gas Uses	2016	New	Gas Heat	1976-2005	SFD	65	135
4126	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Pool & Spa Heaters	2016	New	Gas Heat	1976-2005	SFD	65	72
4127	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Space Cooling	2016	New	Gas Heat	1976-2005	SFD	65	-
4128	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Space Heating	2016	New	Gas Heat	1976-2005	SFD	65	3,942
4129	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Ventilation and Circulation	2016	New	Gas Heat	1976-2005	SFD	65	-
4130	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Clothes Dryer	2017	Existing	Gas Heat	1976-2005	SFD	212,927	51,528
4131	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Clothes Washer	2017	Existing	Gas Heat	1976-2005	SFD	212,927	-
4132	Residential	Reference Case	Lower Mainland	Natural Gas	RATE1	Cooking	2017	Existing	Gas Heat	1976-2005	SFD	212,927	285,785

Consumption Equation

Consumption = Units \times Saturation \times Fuel Share \times UEC

Definitions

Term	Definition	Expressed As	Equation
Consumption	The annual amount of natural gas consumed by an end-use, expressed in gigajoules.	Gigajoules (GJ)	$Consumption = Units \times Saturation \times Fuel Share \times UEC$
Units	The basis for how energy consumption is expressed in each sector.	Number of dwellings (residential); m ² of floor area (commercial); plant capacity in base year GJ (industrial)	$2015 Units_{Residential} = Customers$ Units beyond $2015_{Residential} = Customers_{2015} \times Growth Rate_{Rate 1}$
Saturation	The extent to which an end-use is present in that sector, region, rate class, and building type.	Percentage	$Saturation_X = \frac{\# of appliances providing X}{\# of dwellings}$
Fuel Share	The percentage of the energy end-use that is supplied by natural gas.	Percentage	$Shares_X = rac{Natural \ Gas \ Fuelled \ X}{All \ X}$
Unit Energy Consumption (UEC)	The amount of energy used by each end use per unit.	GJ dwelling	$UEC = \frac{Consumption}{End \ Use \ Count}$

Acronyms

Residential End-Use Survey (REUS) Conservation Potential Review (CPR)

Exceptional Analytics and Advisory Services for the Energy Industry

About the Base Year

- The LTGRP begins by developing a "base year." 2015 is the base year for the 2017 LTGRP and is based on actual consumption data for that year.
- The consumption data supplied was broken down by geographic region, sector, rate class, building type (using NAICS codes).
- PG further apportioned consumption by end use.

Step 1: Set units

$Units_{2015,G-M,SFD,LML} = Customers_{G-M,SFD,LML}$ $Units_{2015,G-M,SFD,LML} = 212,927 dwellings$

Step 2: Set saturation

$Saturation_{SH} = 100\%$

Step 3: Calculate fuel share

SH Fuel Share₂₀₁₅ = SH Fuel Share_{2016 CPR} $\times \frac{SH Fuel Share_{2012 REUS}}{SH Weighted Fuel Share_{2012 REUS}}$ SH Fuel Share₂₀₁₅ = 0.889 $\times \frac{0.945}{0.883}$ SH Fuel Share₂₀₁₅ = 0.952

Base Year: 2015

Base Year: 2015

Base Year: 2015

Step 4: Calculate UEC (1 of 2)

 $UEC_{2015,G-M SFD,LML,SH} = UEC_{2016 CPR SFD} \times \frac{UEC_{2014 LTRP,G-M SFD,LML,SH}}{UEC_{2014 LTRP,LML,SFD,SH}}$ $UEC_{2015,G-M SFD,LML,SH} = 65.3 \times \frac{77.9}{89.3}$ $UEC_{2015,G-M SFD,LML,SH} = 56.9 \frac{GJ}{dwelling}$

Step 4: Calculate UEC (2 of 2)

Step 4: Calculate UEC (2 of 2)

Step 5: Calculate consumption

 $Consumption_{2015} = Units \times Saturation \times Fuel Share \times UEC$ $Consumption_{2015} = 212,927 \ dwellings \times 1 \times 0.952 \times 64.3 \ \frac{GJ}{dwelling}$

 $Consumption_{2015} = 13,029,669 \text{ GJ}$

Exceptional Analytics and Advisory Services for the Energy Industry

About the Reference Case OBSTERITY

- The reference case is the forecast of natural gas consumption over a twenty-year (2016-2036) period based on "business-as-usual" exogenous conditions.
- The reference case starts with the base year, then forecasts consumption to 2036.

Reference Case: 2016

Step 1: Calculate units (1 of 3)

- We assumed there was no demolition so the number of existing units stays constant.
- Growth in the number of customers in this segment occurs when existing dwellings convert to natural gas for their predominant heating fuel.
- FEI provided the customer account forecast by rate class.

Reference Case: 2016

Step 1: Calculate units (2 of 3)

Step 1: Calculate units (3 of 3)

Number of New Customers_{2015 to 2016} = Number of Customers₂₀₁₆ - Number of Customers₂₀₁₅ Number of New Customers_{2015 to 2016} = 212,992 - 212,927Number of New Customers_{2015 to 2016} = 65

Step 2: Set saturation

$Saturation_{SH} = 100\%$

Step 3: Set fuel share

SH Fuel share₂₀₁₆ = SH Fuel share₂₀₁₅ SH Fuel share₂₀₁₆ = 0.952

Step 4: Calculate UEC (3 of 3)

 $UEC_{2016} = UEC_{2015} \times Shell Improvements \times Efficiency Improvements$

$UEC_{2016} = 64.3 \times 0.999 \times 0.992$ $UEC_{2016} = 63.7$

Step 5: Calculate consumption

 $Consumption_{2016} = Units \times Saturation \times Fuel Share \times UEC$ $Consumption_{2016} = 212,992 \ dwellings \times 1 \times 0.952 \times 63.7 \frac{GJ}{dwelling}$ $Consumption_{2016} = 12,915,610 \ GJ$

• Of the consumption in 2016:

- 12,911,668 GJ is from the 212,927 existing customers; and
- 3,942 GJ is from the 65 new customers.

Exceptional Analytics and Advisory Services for the Energy Industry

2016 to 2022

- Continued customer growth based on FEI account forecast
- Saturation remains constant for space heating
- UEC changes (decreases) as:
 - Furnaces and boilers are replaced upon reaching end of life
 - New equipment has improved efficiency
 - Continued natural changes in insulation and windows
- Fuel share for natural gas decreases as renewable natural gas is added to the model as a substitute

Reference Case: 2022

Step 1: Calculate units (1 of 2)

Step 1: Calculate units (2 of 2)

Number of New Customers_{2015 to 2022} = Number of Customers₂₀₂₂ - Number of Customers₂₀₁₅ Number of New Customers_{2015 to 2022} = 213,354 - 212,927Number of New Customers_{2015 to 2022} = 427

Reference Case: 2022

Step 2: Set saturation

$Saturation_{SH} = 100\%$

Step 3: Set fuel share

*SH Fuel share*₂₀₂₂ = 0.949

Shell Improvements_{SH} = 0.993

Step 4: Calculate UEC (3 of 3)

 $UEC_{2022} = UEC_{2015} \times Shell Improvements \times Efficiency Improvements$

$UEC_{2022} = 64.3 \times 0.993 \times 0.951$ $UEC_{2022} = 60.7$

Step 5: Calculate consumption

 $\begin{aligned} Consumption_{2022} &= Units \, \times \, Saturation \, \times \, Fuel \, Share \, \times \, UEC \\ Consumption_{2022} &= 213,354 \, dwellings \, \times \, 1 \, \times \, 0.949 \, \times 60.7 \, \frac{GJ}{dwelling} \\ Consumption_{2022} &= 12,289,048 \, GJ \end{aligned}$

- Of the consumption in 2022:
 - 12,264,453 GJ is from the 212,927 existing customers; and
 - 24,595 GJ is from the 427 new customers.

Exceptional Analytics and Advisory Services for the Energy Industry

Forecasted Worked Example Inputs

	Inputs				Ouput
Year	Units	Saturation	Fuel Share	UEC	Consumption (GJ)
2015	212,927	1	0.952	64.278	13,029,669
2016	212,992	1	0.952	63.696	12,915,610
2017	213,054	1	0.951	63.135	12,789,664
2018	213,117	1	0.950	62.593	12,676,985
2019	213,179	1	0.950	62.068	12,563,689
2020	213,241	1	0.949	61.561	12,460,167
2021	213,301	1	0.949	61.123	12,371,604
2022	213,354	1	0.949	60.701	12,289,048
2023	213,405	1	0.949	60.294	12,209,235
2024	213,455	1	0.949	59.900	12,132,033
2025	213,505	1	0.949	59.517	12,057,053
2026	213,557	1	0.949	59.185	11,992,368
2027	213,607	1	0.949	58.862	11,929,567
2028	213,658	1	0.949	58.549	11,868,664
2029	213,708	1	0.949	58.244	11,809,581
2030	213,757	1	0.949	57.949	11,752,251
2031	213,805	1	0.949	57.693	11,702,731
2032	213,852	1	0.949	57.443	11,654,630
2033	213,899	1	0.949	57.201	11,607,924
2034	213,945	1	0.949	56.966	11,562,536
2035	213,989	1	0.949	56.737	11,518,403
2036	214,032	1	0.949	56.514	11,475,327

Note: The forecasted demand illustrated is specifically for Schedule Rate 1 residential customers in the Lower Mainland for space heating in single-family dwellings built between 1976-2005 that have natural gas as their predominant heating fuel.

Forecasted Demand for Worked Example

Note: The forecasted demand illustrated is specifically for Schedule Rate 1 residential customers in the Lower Mainland for space 70 heating in single-family dwellings built between 1976-2005 that have natural gas as their predominant heating fuel.

2013 2010 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2050 2051 2052 2053 2054 2055 2056

Note: The forecasted demand illustrated is specifically for Schedule Rate 1 residential customers in the Lower Mainland for space 71 heating in single-family dwellings built between 1976-2005 that have natural gas as their predominant heating fuel.

Questions?

Exceptional Analytics and Advisory Services for the Energy Industry

The annual demand Reference Case

FortisBC Renewable Natural Gas "RNG"

- Uses methane generated from organic waste
 - Landfills, municipal organics, agricultural, wastewater
- Displaces conventional Natural Gas
- Injecting RNG since Fall 2010
- Currently four projects + three in progress

upgrading

facility and

pipeline

180

Demand (TJ)

Residential Participation began 2011

- Customer chooses a blend of RNG
- Currently more than about 7,800 Customers

> 28,000 tonne CO2e in GHG savings since launch 5% 10% 25% 50% 00% 100 80 60 40 20 2011 2012 2013 2014 2015 2016

Annual RNG Demand

digester and raw

gas generation

SOULCE

RNG Demand from customers has increased each year

Renewable Natural Gas will account for a minimal slice of future annual demand

Supplier Video

Not Impactful

Building scenarios from the critical uncertainties – historical steps

1. Describe	e Critical Uncertainties	

of outcomes for each uncertainty

Qualitative description of each outcome

Building scenarios from the critical uncertainties – historical steps

Building scenarios from the critical uncertainties – current status

The different critical uncertainties impact the forecast model in various ways

Critical Uncertainty	Forecast Model Levers
Economic Growth - Account Growth as Proxy	 Residential building stock Commercial accounts Industrial accounts
Natural Gas Price	- Long run natural gas fuel share

The different critical uncertainties impact the forecast model in various ways

Critical Uncertainty	Forecast Model Levers
Carbon Price	- Long run natural gas fuel share
 Non-Price Carbon Policy Building Codes Appliance Standards Fuel Switching Requirements 	 Long run natural gas fuel share Natural gas use per customer Appliance efficiency

The different critical uncertainties impact the forecast model in various ways

Critical Uncertainty	Forecast Model Levers
RNG Demand - Discrete Forecast from RNG Team	- RNG fuel share
NGT Demand - Discrete Forecast from NGT Group	 Commercial & industrial rate class demand
 Large Industrial Point Loads From Internal Working Group Layered on top of Scenario Results 	 Layered on top of scenario analysis as industrial rate class demand

Reviewing the quantitative outcomes – economic critical uncertainties

Critical Uncertainty	Possible Outcomes
Economic Growth - Account Growth as Proxy	 High Reference Low
Natural Gas Price	 High Reference Low

Economic critical uncertainties – economic growth

Lower Mainland, Rate 3

Economic critical uncertainties – natural gas price

Sumas Natural Gas Price Forecast (Annual Prices)

Reviewing the quantitative outcomes – carbon policy critical uncertainties

Critical Uncertainty	Possible Outcomes
Carbon Price	 High Medium Reference Low
 Non-Price Carbon Policy Building Codes Appliance Standards Fuel Switching Requirements 	 Accelerated Reference Delayed

Policy critical uncertainties – carbon price

Policy critical uncertainties – carbon price

Policy critical uncertainties – building codes reference case

Illustration – Residential, Single Family Dwellings, LM

Climate Leadership Plan

Policy critical uncertainties – building codes accelerated policy

Illustration – Residential, Single Family Dwellings, LM

Climate Leadership Plan

Policy critical uncertainties – fuel switching for <u>accelerated policy scenarios</u>

Sector	Shift from Natural Gas to other fuels over 2017 LTGRP Forecast Horizon
Residential (including apartments)	 26%-36% reduction for space heating 16%-25% reduction for domestic hot water
Commercial	 15.17% of buildings connect to district energy systems Additional 1.56% of buildings switch hot water loads away from natural gas
Industrial	 1.04% of buildings switch hot water loads away from natural gas

Policy critical uncertainties – appliance standards for <u>accelerated policy scenarios</u>

Sector	Assumed Performance Standards
Residential	 Fireplaces: minimum 50% FE in 2018 Furnaces: minimum 95% AFUE in 2020 Boilers: minimum 90% AFUE in 2020 and 95% AFUE in 2025 Tankless water heaters: minimum 82% EF in 2018
Commercial	- Water heaters: minimum 95% TE in 2018
Industrial	- N/A

Reviewing the quantitative outcomes – extraneous critical uncertainties

Critical Uncertainty	Possible Outcomes
RNG Demand - Discrete Forecast from RNG Team	 High Reference Low
NGT Demand - Discrete Forecast from NGT Group	 High Reference Low
 Large Industrial Point Loads From Internal Working Group Layered on top of Scenario Results 	ReferenceHypothetical examples

Any questions about assumptions before we proceed to results?

Please refer to the scenario summary handouts on your desks.

Width of the forecast jaws – all sectors

N.B.: TPT-1 and TPT-2 as well as all company own use demand are excluded from all results.

Detailed scenario results - residential

Detailed scenario results - commercial

Detailed scenario results - industrial

Detailed scenario results – Renewable Natural Gas

Any scenario questions before we conclude this section?

System Capacity Planning

In the next hour we will discuss...

- Annual demand versus peak demand.
- Differences in peak demand for system capacity planning and gas supply planning
- Traditional peak demand method System Capacity Planning
- Posterity Group's pilot study to derive peak day and peak hour UPC and forecasts from annual demand UPC and forecasts
- Anticipated outcomes...

Annual and Peak Demand

Annual Demand

- Determines the amount of gas FEI acquires and transports on behalf of customers on an annual basis
- Determines units of energy available to recover costs of service and rate of return

Peak Demand

- Highest demand expected on the system
- Correlated to cold weather
- Does not include seasonal and interruptible customer classes
- Peak demand estimated as the maximum consumption hourly during an unusually cold weather event
- FEI designs systems to ensure delivery of gas to all firm customers in a cold weather event that might occur once in 20 years
- 22 independent weather zone throughout FEI service areas considered in peak planning for system capacity

Peak Demand Gas Supply vs. System Capacity

Peak Demand - Gas Supply Planning

- Determines supply resources needed to serve customers during a peak day event
- Resources for transportation customers are not included

Peak Demand – System Capacity

- Determines the infrastructure needed to deliver gas to core customers during a peak day or peak hour event
- Infrastructure requirements must also allow delivery of gas to firm transportation customers
- Location of demand within the transmission and distribution system is a significant factor
Peak Demand and Peak Forecast for System Capacity

Peak Demand Forecast (traditional)

UPC_{peak}, industrial demand and firm DTQ demand remains constant over the forecast period

How do we derive Peak Hour Load for our Hydraulic Models and Forecasts ?

Core Rate 1, 2 & 3 Customers – Monthly consumption data

Peak Hour Factor

- Used to convert daily consumption to peak hour consumption for customers with monthly consumption data only. (Rate 1, 2 & 3 Customer)
- Peak Hour typically happen around 7am or 8am

continued

Peak Hour Use Per Customer (Core)

UPC_{peak}=Daily Q_{Design} x PHF/HV

HV = Heating Value (GJ/std m³)

Heating value converts energy demand into the equivalent standard volume used for hydraulic modeling

- Average UPC_{peak} values for each region and for each rate class (1,2 & 3) are determined
- Regional UPC_{peak} values are averaged with the results of the previous two years analysis to smooth any atypical changes in UPC_{peak} that don't sustain year over year
- The resulting 3 year rolling average UPC_{peak} values are used in modeling and forecasting

Industrial Customers – Hourly measurement

- For process (non weather sensitive loads) the maximum observed hourly demand is used
- For weather sensitive demand a temperature regressed value is used
- No peak hour factor is applied

Q – Flow (m³/hr.)

Past Consumption History

Customers with contract firm– Contract DTQ obligations

- Large interruptible transportation customers may have a firm contract amount
- These customers are limited to 5% of their firm daily total quantity (DTQ) under peak hour conditions

Gas System Reinforcements

Peak Demand Forecast

Traditionally...

- Base year peak demand for core customers is determined as previously described
- The current UPC_{peak} values are applied new customers over the planning period

 (added peak consumption = ∑customer adds x UPC_{peak})
- The current industrial account and firm DTQ contract account numbers are held constant with no increase or decrease in peak consumption

Peak Demand Forecast

Examining alternatives to the traditional method...

- Base year peak demand for core customers is determined as previously described.
- The UPC_{peak} values for existing and new customers core and industrial customers are varied over the planning period.
- UPC_{peak} variations will be derived considering the same end use factors used to determine annual demand in each scenario.
- Industrial accounts will vary in the high and low forecasts.

FortisBC Known Values

From customer sales data

FortisBC Known Values

From customer sales data

From system planning data

Hourly Peak UPC for Lower Mainland Residential Accounts in 2015 (m3/hr)

Adding End-Use Value

From End Use Model

From system planning data

Hourly Peak UPC for Lower Mainland Residential Accounts in 2015 (m3/hr)

Adding End-Use Value

From End Use Model

From Load Shape Model

Hourly Peak UPC for Lower Mainland Residential Accounts in 2015 (m3/hr)

Reference Case Forecast - Annual

Annual UPC for Lower Mainland Residential Accounts by Year (GJ/yr)

Reference forecast projects a decline in annual UPC of approximately 15%.

Reference Case Forecast - Peak

Hourly Peak UPC for Lower Mainland Residential Accounts in 2015 (m3/hr)

Reference forecast projects a decline in hourly peak UPC of approximately 17%.

Reference Case Forecast - Annual

Different scenarios forecast declining annual UPC between 10% and 43%.

Reference Case Forecast - Peak

Different scenarios forecast declining hourly peak UPC between 11% and 46%.

Peak Demand Forecasts

Anticipated outcomes...

- Peak demand forecasts derived for each end use scenario as well as the traditional forecast method
- Determine the differences in infrastructure requirements at peak demand for each end use scenario
- Explore if DSM programs influence on end use might also influence peak demand forecasts and the corresponding infrastructure needs

Questions?

Next steps

Thank you

For further information, please contact:

FortisBC Integrated Resource Planning

irp@fortisbc.com

Find FortisBC at:

Fortisbc.com

604-676-7000